Well, first we must remember that

This is because


So then

Here we have to get the moles of hydrogen (H₂) consumed to form water (H₂O) from 1.57 moles of oxygen (O₂)
In this process 3.14 moles of H₂ will be consumed.
The balanced reaction between oxygen (O₂) and hydrogen (H₂); both of which are in gaseous state to form water, which is liquid in nature can be written as-
2H₂ (g) + O₂ (g) = 2H₂O (l).
Thus form the equation we can see that 1 mole of oxygen reacts with 2 moles of hydrogen to form 2 moles of water.
So, 1.57 moles of oxygen will consume (1.57×2) = 3.14 moles of hydrogen to form water.
1) ideal gas law: p·V = n·R·T.
p - pressure of gas.
V -volume of gas.
n - amount of substance.
R - universal gas constant.
T - temperature of gas.
n₁ = 0,04 mol, V₁ = 0,06 l.
n₂ = 0,07 mol, V₂ = 0,06 · 0,07 ÷ 0,04 = 0,105 l.
2) V₁ = 0,06 l, T₁ = 240,00 K.
T₂ = 340,00 K, V₂ = 340 · 0,06 ÷ 240 = 0,05 l.
Answer:
The answer to your question is 50 moles of O₂
Explanation:
Balanced Chemical reactions
1.- N₂(g) + 3H₂ (g) ⇒ 2NH₃ (g)
2.- 4NH₃ (g) + 5O₂(g) ⇒ 4NO (g) + 6H₂O (l)
moles of N₂(g) = 20 moles
moles of O₂(g) = ?
Process
1.- Calculate the moles of NH₃
1 mol of N₂ ------------- 2 moles of NH₃
20 moles of N₂ --------- x
x = (20 x 2) / 1
x = 40 moles of NH₃
2.- Calculate the moles of O₂
4 moles of NH₃ -------------- 5 O₂
40 moles of NH₃ ------------ x
x = (40 x 5) / 4
x = 200 / 4
x = 50 moles of O₂
Answer:
The open system evaporates the solvent in the solution
Explanation:
An open system is a system in which exchange of materials and energy can occur. If a TLC set up is left open, then the set up constitutes an open system.
During TLC, the sample is dotted on the plate and inserted into a suitable solvent. The solvent moves up the plate and achieves the required separation of the mixture.
Most of these solvents used used TLC are volatile organic compounds. Therefore, if the TLC set up is left open, the solvent will evaporate leading to poor results after running the TLC experiment.