Use ideal gas equation: pV = nRT
Now pass n to mass: n = mass / MM .... [MM is the molar mass]
pV = [mass/MM]*RT =>mass/V = [p*MM] / RT and mass / V = density
p= 130 kPa = 130,000 Pa = 130,00 joule / m^3
T = 10.0 ° + 273.15 = 283.15 k
MM of sulfur (S) = 32 g/mol = 32000 kg/mol
density = 130,000 Pa * 32000kg/mol / [8.31 joule / mol*k * 283.15 k] = 1.77*10^6 kg/m^3 = 1.77 g/L ≈ 1.8 g/L
Then, I do not get any of the option choices.
Is it possbile that the pressure is 13.0 kPa instead 130. kPa? If so the answer would be 18 g/L
Note that the mass is not used. You do not need it unless you are asked for the volume, which is not the case.
According to the conversation of mass, mass cannot be created or destroyed. This means whatever is done to one side, must be done to the other.
There are 4 Phosphorus atoms on the left, there must be 4 on the right. To do this, you must multiply the P2O3 by 2 to get 4 Phosphorus atoms and 6 Oxygen atoms. Now to balance the Oxygen atoms, you must multiply the oxygen atoms on the left by 3.
1 P4 + 3 O2 —-> 2 P2O3
Lastly, this equation type is synthesis (combination) because two reactants are becoming a single product.
Answer:
The dimerization of butadiene to 4-vinylcyclohexene folows second order kinetics and its rate law will be given by :
![R=k[C_4H_6]^2](https://tex.z-dn.net/?f=R%3Dk%5BC_4H_6%5D%5E2)
Explanation:

The rate of the reaction ;
![R=k[C_4H_6]^x](https://tex.z-dn.net/?f=R%3Dk%5BC_4H_6%5D%5Ex)
As given in the question , that graph of time verses
was linear but plots of
or
was curved.
Generally:
Graph of time verses
for zero order reaction is linear with negative slope.
Graph of time verses
for secon order reaction is linear with negative slope.
Graph of time verses
for secon order reaction is linear with positive slope.
So, the dimerization of butadiene to 4-vinylcyclohexene folows second order kinetics and its rate law will be given by :
![R=k[C_4H_6]^2](https://tex.z-dn.net/?f=R%3Dk%5BC_4H_6%5D%5E2)
The structure will be:
H₃C-CH₂-CH=CH-CH₂-CH₃
This class of compounds is known or referred to as alkenes. Alkenes are unsaturated hydrocarbons that contain a carbon-carbon double bond. The present of this double bond alters the properties of alkenes rom alkanes.
Answer:
A 3s orbital is at a greater average distance from the nucleus than a 2s orbital
Explanation:
As the principal quantum number n increases, the distance of the orbital from the nucleus increases. Hence if we consider the 2s and 3s orbitals, it is easy to see that the 3s orbital is at a greater distance from the nucleus than the 2s orbitals.
This is clearly seen when we plot the radial distribution against the distance from the nucleus. This enables us to visualize the region in space in which an electron may be found.