Answer:
it would definitely be wienerballs1977
Explanation:
fossil fuels x (3x1017kJ/yr) equals out to be wienerballs1977.
thx for the challenge !
The energy is transformed into kinetic energy which makes the substance to move. The law of conservation of energy which is the first law of thermodynamics states that in a closed system energy can neither be created nor destroyed but can change from one form to another
I don't think it wont be a big explosion
Answer:
Explanation:
A <em>combustion reaction</em> is the reaction with oxygen along with the release of energy in form of heat or light.
Organic compounds (like CH₄) undergo combustion forming water and CO₂.
The combustion reaction of CH₄ is:
Hence, the first equation from the choices is not showing the combustion reaction of CH₄.
Not only organic compounds can undergo combustion. Metals and no metals can undergo combustion, i.e. metals and no metals can react with oxygen releasing light or heat.
The reaction of copper and oxygen (second choice) is a combustion reaction:
The formation of water (2H₂ + O₂ → 2H₂O) is other example of a combustion reaction where no organic compounds are involved.
On the other hand, the other two equations from the choice list are not reactions with oxygen, so they do not show combustion reactions.
Answer : q = 6020 J, w = -6020 J, Δe = 0
Solution : Given,
Molar heat of fusion of ice = 6020 J/mole
Number of moles = 1 mole
Pressure = 1 atm
Molar heat of fusion : It is defined as the amount of energy required to melt 1 mole of a substance at its melting point. There is no temperature change.
The relation between heat and molar heat of fusion is,
(in terms of mass)
or,
(in terms of moles)
Now we have to calculate the value of q.

When temperature is constant then the system behaves isothermally and Δe is a temperature dependent variable.
So, the value of 
Now we have to calculate the value of w.
Formula used : 
where, q is heat required, w is work done and
is internal energy.
Now put all the given values in above formula, we get

w = -6020 J
Therefore, q = 6020 J, w = -6020 J, Δe = 0