answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Semenov [28]
2 years ago
10

The common constituent in all acid solutions is

Chemistry
1 answer:
Oksi-84 [34.3K]2 years ago
8 0

Answer:

H+/H3O , H2O

Explanation:

The ability to be a proton donor is the Bronsted-Lowry definition of acids. The Lewis definition of an acid is an electron pair acceptor, which covers molecules liKE BF3

The ability to accept a pair of electrons is what is common to all acids, not the ability to be a proton donor.

All acid solutions contain hydronium ions (H3O+), hydroxide ions (OH-) and water molecules. Each different acid solution will then have an anion that is exclusive to that acid. For example, hydrochloric acid solution will contain all of the above and chloride ions (Cl-).

All acids contain the acidic substance dissolved in water. Water naturally dissociates to a small amount, creating hydronium and hydroxide ions. But most of the water remains as water molecules.

Then when we add an acid, like HCl, the oxygen on the water attracts the hydrogen from the HCl. The electrons in the covalent bond remain with the chlorine, giving it a negative charge and thus it becomes the chloride ion (Cl-). The hydrogen now has a positive charge and as said before, is attracted to the water (specifically the lone pair of electrons on the oxygen) to create hydronium ions.

This creates extra hydronium ions, making the solution acidic. But remember, there are still water molecules, hydroxide ions and the negative ion all in solution for all acids.

You might be interested in
Calculate the maximum concentration (in m) of silver ions (ag+) in a solution that contains 0.025 m of co32-. the ksp of ag2co3
Helen [10]
Equilibrium equation is

<span>Ag2CO3(s) <---> 2 Ag+(aq) + CO32-(aq) </span>

<span>From the reaction equation above, the formula for Ksp: </span>

<span>Ksp = [Ag+]^2 [CO32-] = 8.1 x 10^-12 </span>
<span>You know  [CO32-], so you can solve for [Ag+] as: </span>
<span>(8.1 x 10^-12) = [Ag+]^2 (0.025) </span>
<span>[Ag+]^2 = 3.24 x 10^-10 </span>
<span>[Ag+] = 1.8 x 10^-5 M </span>
5 0
2 years ago
In the heat equation, what does Q represent? heat required to raise the temperature specific heat of the substance mass of the s
MaRussiya [10]

Answer: heat required to raise the temperature

Explanation: Heat equation is represented as:

Q= m\times c\times \Delta T

Q= heat required to raise the temperature

m= mass of the substance

c = heat capacity of substance    

\Delta T={\text{Change in temperature}}


7 0
2 years ago
Read 2 more answers
Magnesium and nitrogen react in a combination reaction to produce magnesium nitride: 3 Mg N2 → Mg3N2 In a particular experiment,
vlada-n [284]

Answer:

The mass of Mg consumed is 21.42g

Explanation:

The reaction is

3Mg+N_{2}-->Mg_{3}N_{2}

As per balanced equation, three moles of Mg will react with one mole of nitrogen to give one mole of magnesium nitride.

as given that mass of nitrogen reacted = 8.33g

So moles of nitrogen reacted = \frac{mass}{molarmass}=\frac{8.33}{28}=0.2975mol

moles of Mg required = 3 X moles of nitrogen taken = 3X0.2975 = 0.8925mol

Mass of Mg required = moles X molar mass = 0.8925 X 24 = 21.42 g

5 0
2 years ago
Titanium has five common isotopes: 46Ti (8.0%), 47Ti (7.8%), 48Ti (73.4%), 49Ti (5.5%), 50 Ti (5.3%). What is the average atomic
zhannawk [14.2K]
(46x8.0)+(47x7.8)+(48x73.4)+(49x5.5)+(50x5.3) = 4792.3

4792.3/100 = 47.923 this is the average atomic mass of Titanium
6 0
2 years ago
The initial temperature of the water in a constant-pressure calorimeter is 24°C. A reaction takes place in the calorimeter, and
kupik [55]

Answer:

Explanation:

For a chemical reaction, the enthalpy of reaction (ΔHrxn) is … ... to increase the temperature of 1 g of a substance by 1°C; its units are thus J/(g•°C). ... Both Equations 12.3.7 and 12.3.8 are under constant pressure (which ... The specific heat of water is 4.184 J/g °C (Table 12.3.1), so to heat 1 g of water by 1 ..

8 0
2 years ago
Read 2 more answers
Other questions:
  • A chemist mixes 500 g of lead at 500°c with 1,200 g of water at 20°c. she then mixes 500 g of copper at 500°c with 1,200 g of wa
    7·1 answer
  • When a metal and a nonmetal react, the __________ tends to lose electrons and the __________ tends to gain electrons?
    10·1 answer
  • Caleb wants to find out which type of floor material is best for bouncing tennis balls the highest. Which statement best describ
    5·2 answers
  • (f) what is the observed rotation of 100 ml of a solution that contains 0.01 mole of d and 0.005 mole of l? (assume a 1-dm path
    12·2 answers
  • Why does blowing carbon dioxide gas into aqueous barium hydroxide reduce?
    8·2 answers
  • A mixture of three noble gases has a total pressure of 1.25 atm. The individual pressures exerted by neon and argon are 0.68 atm
    7·2 answers
  • A 0.100 l solution of 0.300 m agno3 is combined with a 0.100 l solution of 1.00 m na3po4. calculate the concentration of ag and
    13·1 answer
  • The acid-dissociation constant at 25.0 °c for hypochlorous acid (hclo) is 3.0 ⋅ 10−8. at equilibrium, the molarity of h3o+ in a
    11·1 answer
  • All of the following contribute to the large, negative, free-energy change upon hydrolysis of "high-energy" compounds except: a.
    8·1 answer
  • n the diagram shown, when an object ‘X’ is brought near the ring shaped magnet, the magnet moves away from it. Four friends are
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!