To determine the mass of the hydrogen gas that was collected, we calculate for the moles of hydrogen gas from the conditions given. In order to do this, we need an equation which would relate pressure, volume and temperature. For simplicity, we assume the gas is an ideal gas so we use the equation PV = nRT where P is the pressure, V is the volume, n is the number of moles of the gas, T is the temperature and R is the universal gas constant. We calculate as follows:
PV = nRT
n = PV / RT
n = (18.6/760) (7.80) / 0.08205 ( 21 + 273.15)
n = 0.0079 mol
Mass = 0.0079 mol ( 18.02 g / mol ) = 0.1425 g H2
Answer:
As
Explanation:
For any element to exhibit the pattern of ionization energy shown in the question, it must possess five electrons in its outermost shell. These five electrons are not lost at once. They are lost progressively until the valence shell becomes empty. The ionization energy increases steadily as more electrons are lost from the valence shell.
The only pentavalent element among the options in arsenic, hence the answer.
Answer : The complete chemical equation is,

Explanation :
As we know that, in a chemical equation the reacting species present on left side and the product formed present on right side and a right arrow inserted between the reactants and product that show a chemical reaction taking place.
In the chemical reaction, the phases of the substances are also included and subscripts and superscripts are also used for the numbers.
For the given chemical reaction, the balanced chemical equation including the phases, is given by:

we are given
a swimming pool contains 2,850 kiloliters (kL) of water
2,850 kiloliters (kL)=2850000L
we know that


Firstly , we will find for 1L

now, we can multiply both sides by 2850000



so,
a swimming pool contains 752972.25892gal of water...........Answer