The combustion of any hydrocarbon yields water and carbon dioxide. We will now construct a balanced equation:
C₃H₈ + 5O₂ → 3CO₂ + 4H₂O
Each mole of propane requires 5 moles of oxygen.
Answer:
Fe
Explanation:
The electrical conductivity depends mainly on the type of chemical bonds between the atoms of a compound.
In the case of MgF2, FeCl3 and FeO3, these have the type of ionic bond. This means that in the atoms of the compound there is an electron transfer, to keep eight electrons in the outermost layer and thus resemble the electronic configuration of the inert gas closest to each of the two elements, due to this ions of opposite charges are formed that are held together by electrostatic forces. These types of compounds are good conductors of electricity, however, to have this property, they must be dissolved in water or molten.
In the case of Fe, however, the type of union between atoms is metallic. In this type of junction, valence electrons are quite free inside the metal, which makes it easy for them to move. For this reason, this compound will conduct electricity in a solid state.
Answer:
C. 0.04 moles per cubic decimeter.
Explanation:
The molar mass of the Iodine is 253.809 grams per mole and a cubic decimeter equals 1000 cubic centimeters. The concentration of Iodine (
), measured in moles per cubic decimeter, can be determined by the following formula:
(1)
Where:
- Mass of iodine, measured in grams.
- Molar mass of iodine, measured in grams per mol.
- Volume of solution, measured in cubic decimeters.
If we know that
,
and
, then the concentration of iodine in a solution is:


Hence, the correct answer is C.
Ksp of AgCl= 1.6×10⁻¹⁰
AgCl=Ag⁺ +Cl⁻
Ksp=[Ag⁺][Cl⁻]
Assume [Ag⁺]=[Cl⁻]=x
Ksp=x²
1.6×10⁻¹⁰=x²
x=0.000012
In FeCl₃:
FeCl₃------>Fe⁺³+ 3Cl⁻
as there is 0.010 M FeCl₃
So there will be ,
[Cl⁻]= 0.030
So
[Ag⁺]=Ksp/[Cl⁻]
=1.6×10⁻¹⁰/0.030
=5.3×10⁻⁹
so solubility of AgCl in FeCl₃ will be 5.3×10⁻⁹.