273 Kelvin, 0 degrees Celsius, 32 degrees Fahrenheit
w/w percentage <span>
= mass of the pure compound /
total mass of the sample x 100%
70% HNO₃
contains by mass means every 100 g of sample has 70 g of HNO₃.</span><span>
The mass of solution = 103.8 g
Hence the mass of HNO₃ = 103.8 g x 70%</span><span>
= 103.8 g x (70 / 100)
<span>
= 72.66 g = 72.7 g.</span></span>
Rydberg Eqn is given as:
1/λ = R [1/n1^2 - 1/n2^2]
<span>Where λ is the wavelength of the light; 2626 nm = 2.626×10^-6 m </span>
<span>R is the Rydberg constant: R = 1.09737×10^7 m-1 </span>
<span>From Brackett series n1 = 4 </span>
<span>Hence 1/(2.626×10^-6 ) = 1.09737× 10^7 [1/4^2 – 1/n2^2] </span>
<span>Some rearranging and collecting up terms: </span>
<span>1 = (2.626×10^-6)×(1.09737× 10^7)[1/16 -1/n2^2] </span>
<span>1= 28.82[1/16 – 1/n2^2] </span>
<span>28.82/n^2 = 1.8011 – 1 = 0.8011 </span>
<span>n^2 = 28.82/0.8011 = 35.98 </span>
<span>n = √(35.98) = 6</span>
Answer:
21.16 MPa
Explanation:
Partial pressure of oxygen = 5.62 MPa
Total gas pressure = 26.78 MPa
But
Total pressure of the gas= sum of partial pressures of all the constituent gases in the system.
This implies that;
Total pressure of the system = partial pressure of nitrogen + partial pressure of oxygen
Hence partial pressure of nitrogen=
Total pressure of the system - partial pressure of oxygen
Therefore;
Partial pressure of nitrogen= 26.78 - 5.62
Partial pressure of nitrogen = 21.16 MPa