<h2>Answer:</h2>
The correct answer is option C which is, "Electrons in the orbit closest to the nucleus have the least amount of energy".
<h3>
Explanation:</h3>
- There are different orbitals around the nucleus on which the electrons moves around the nucleus.
- These orbitals have a specific energy, due to which they are known as energy levels.
- The energy level near to the nucleus has least amount of the energy and the energy of the orbitals increase as the distance of the orbitals increase to the nucleus.
<span>Let's </span>assume that the gas has ideal gas behavior. <span>
Then we can use ideal gas formula,
PV = nRT<span>
</span><span>Where, P is the pressure of the gas (Pa), V
is the volume of the gas (m³), n is the number
of moles of gas (mol), R is the universal gas constant ( 8.314 J mol</span></span>⁻¹ K⁻¹)
and T is temperature in Kelvin.<span>
<span>
</span>P = 60 cm Hg = 79993.4 Pa
V = </span>125 mL = 125 x 10⁻⁶ m³
n = ?
<span>
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
T = 25 °C = 298 K
<span>
By substitution,
</span></span>79993.4 Pa<span> x </span>125 x 10⁻⁶ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 298 K<span>
n = 4.0359 x 10</span>⁻³ mol
<span>
Hence, moles of the gas</span> = 4.0359 x 10⁻³ mol<span>
Moles = mass / molar
mass
</span>Mass of the gas = 0.529 g
<span>Molar mass of the gas</span> = mass / number of moles<span>
= </span>0.529 g / 4.0359 x 10⁻³ mol<span>
<span> = </span>131.07 g mol</span>⁻¹<span>
Hence, the molar mass of the given gas is </span>131.07 g mol⁻¹
Answer:The endpoint does not correspond exactly to the equivalence point
At the endpoint, a change in a physical quantity associated with the equivalence point occurs.
At the equivalence point, the mole number of equivalents of reagent added is equal to the mole number of equivalents of analyte present.
Explanation:
The end point is always indicated by some physical property that changes such as colour. At the equivalence point, the mole number of equivalents of reagent added is equal to the mole number of equivalents of analyte present. The equivalence point cannot be physically observed but can be deduced after a titration curve is plotted.
Answer:
The percent by mass of 3.55 g NaCl dissolved in 88 g water is 3.88%
Explanation:
When a solute dissolves in a solvent, the mass of the resulting solution is a sum of the mass of the solute and the solvent.
A percentage is a way of expressing a quantity as a fraction of 100. In this case, the percentage by mass of a solution is the number of grams of solute per 100 grams of solution and can be represented mathematically as:

In this way it allows to precisely establish the concentration of solutions and express them in terms of percentages.
In this case:
- mass of solute: 3.55 g
- mass of solution: 3.55 g + 88 g= 91.55 g
Replacing:

Percent by mass= 3.88%
<u><em>The percent by mass of 3.55 g NaCl dissolved in 88 g water is 3.88%</em></u>