Answer:
C is the element thats has been oxidized.
Explanation:
MnO₄⁻ (aq) + H₂C₂O₄ (aq) → Mn²⁺ (aq) + CO₂(g)
This is a reaction where the manganese from the permanganate, it's reduced to Mn²⁺.
In the oxalic acid, this are the oxidation states:
H: +1
C: +3
O: -2
In the product side, in CO₂ the oxidation states are:
C: +4
O: -2
Carbon from the oxalate has increased the oxidation state, so it has been oxidized.
A volumetric flask is used to contain a predetermined volume of substance and only measures that volume, for example 250 ml.
Conical flasks can be used to measure the volume of substances but the accuracy they provide is usually up to 10ml. Conical flasks are used in titrations, reactions where the liquid may boil, and reactions which involve stirring.
Pippettes are of two types, volumetric and graduated. Pippettes are used where high accuracy is required and volumetric pippettes come in as little as 1 ml. Pippettes are usually used in titrations.
Graduated cylinders come in a wide variety of sizes and their accuracy can be down to as much as 1 ml. They are used to contain liquids.
<span>Filtration, if its a precipitate that means its insoluble. </span>
Answer:
should be put away in a bag or a pocket away from the food
Explanation:
Answer:
One of the bonds in nitrate is shorter than the other two.
Explanation:
We would firstly need to draw the Lewis structure for nitrate anion. To do this, let's follow the standard steps:
- calculate the total number of valence electrons: five from nitrogen, each oxygen contributes 6, so a total of 18 from oxygen atoms, as well as one from the negative charge, we have a total of 24 valence electrons;
- assign the central atom, usually this is the atom which is single; in this case, we have nitrogen as our central atom;
- assign single bonds to all the terminal atoms (oxygen atoms);
- assign octets to the terminal atoms and calculate the number of electrons assigned;
- the number of electrons assigned is 24, so no lone pairs are present on nitrogen;
- calculate the formal charges: each oxygen has a formal charge of -1 (formal charge is calculated subtracting the sum of lone pair electrons and bonds from the number of valence electrons of that atom); nitrogen has a formal charge of +2;
- nitrogen doesn't have an octet as well, so we'll both minimize its formal charge and make it obtain an octet if we make one double bond N=O.
Therefore, we may have 3 resonance structures, as this double bond might be formed with any of the 3 oxygen atoms.
By definition, double bonds are shorter than single ones, so one of the bonds is shorter than the other two.