Answer:
The answer to your question is 50 moles of O₂
Explanation:
Balanced Chemical reactions
1.- N₂(g) + 3H₂ (g) ⇒ 2NH₃ (g)
2.- 4NH₃ (g) + 5O₂(g) ⇒ 4NO (g) + 6H₂O (l)
moles of N₂(g) = 20 moles
moles of O₂(g) = ?
Process
1.- Calculate the moles of NH₃
1 mol of N₂ ------------- 2 moles of NH₃
20 moles of N₂ --------- x
x = (20 x 2) / 1
x = 40 moles of NH₃
2.- Calculate the moles of O₂
4 moles of NH₃ -------------- 5 O₂
40 moles of NH₃ ------------ x
x = (40 x 5) / 4
x = 200 / 4
x = 50 moles of O₂
Answer:
The mass is recorded as 32.075 g
Explanation:
"The first digit of uncertainty is taken as the last significant digit", this is the rule for significant figures in the analysis. The balance measures the mass up to three decimal places, so it makes the most sense to note the whole figure.
8A+2B——> 6C
since you multiply by a factor of 2 you do that to each letter
4*2=8
1*2=2
3*2=6
Answer:
Calcium
Explanation:
Since the element reacts with oxygen to form an oxide with the formula MO, the charge on the element is +2.
Also, since the oxide MO when dissolved in water is basic, the metal is an alkali earth metal.
From the above conditions;
The metal is not arsenic because arsenic is a metalloid has the following oxides As₂O₃ and As₃O₅ and are respectively amphoteric and acidic in nature
The metal is not germanium because is a metalloid and even though germanium oxide has the formula GeO₂, it is amphoteric.
The metal is not chlorine because chlorine is a non-metal
The metal is definitely calcium because calcium oxide has the formula CaO and calcium is an alkaline earth metal.
The metal is not selenium because selenium is anon-meal and its oxide has the formula Se0₂ and is acidic
Hydrogen bonding is a type of intermolecular forces of attraction in which hydrogen atom is bonded to one of the most electronegative atoms. This gives a partial positive charge to hydrogen atom and a partial negative charge to the electronegative atom involved in the bonding. The electronegative atoms that can form hydrogen bonding are fluorine (F), nitrogen (N), and oxygen (O).
Therefore the correct option is,
A) NH3