<span>I would measure the mass of the solid substance. I would prepare a known mass of room temperature water large enough to submerge the solid substance in question. I would place the water in an insulated container. Then I would heat the solid substance to a known temperature. I would measure the temperature of the heated sample and the water. Then I would submerge the sample in the water and allow the sample and the water to reach the same temperature. I would measure this equilibrium temperature.
I would interpret the difference in temperature between the heated sample and the equilibrium temperature as the change in temperature in the sample. Given the known mass, the beginning temperature of the water, and the equilibrium temperature I can determine how much energy was transferred from the heated sample to the water.
Now the mass of the sample, a change in temperature in the solid substance, and the amount of energy transferred to create the temperature is known. This is sufficient to determine the specific heat of the solid substance</span>
Answer:
The correct answer is 28.2 %.
Explanation:
Based on the given question, the partial pressures of the gases present in the trimix blend is 55 atm oxygen, 50 atm helium, and 90 atm nitrogen. Therefore, the sum of the partial pressure of gases present in the blend is,
Ptotal = PO2 + PN2 + PHe
= 55 + 90 + 50
= 195 atm
The percent volume of each gas in the trimix blend can be determined by using the Amagat's law of additive volume, that is, %Vx = (Px/Ptot) * 100
Here Px is the partial pressure of the gas, Ptot is the total pressure and % is the volume of the gas. Now,
%VO2 = (55/195) * 100 = 28.2%
%VN2 = (90/195) * 100 = 46%
%VHe = (50/195) * 100 = 25.64%
Hence, the percent oxygen by volume present in the blend is 28.2 %.
Answer: D.Aluminium Oxide 0.10, Magnesium Oxide 0.50
Explanation:
Number of moles of NaOH= number of moles × volume
Number of moles= 100/1000 × 2 = 0.2 moles
Since;
2 moles of NaOH yield 1 mole of Al2O3
0.2 moles of NaOH will yield 0.2 × 1/2 = 0.1 moles of Al2O3.
Number of moles of HCl= 800/1000 × 2 = 1.6 moles
If 1 mole of Al2O3 requires 6 moles of HCl
0.1 moles of Al2O3 requires 0.1 × 6 = 0.6 moles of HCl.
Number of moles of HCl left after reaction with Al2O3 = 1.6- 0.6 = 1 mole
This leftover reacts with MgO
But;
1 mole of MgO reacts with 2 moles of HCl
x moles of MgO reacts with 1 mole of HCl
Thus; x= 0.5 moles of MgO
Answer:An ion with 5 protons, 6 neutrons and a charge of 3+ has an atomic number of 5
Explanation:
Answer: Elastic
Explanation: Both Objects had there momentum and kinetic energy conserved.