Because I can't see your options, all I can say is to look for the one whose numbers can't be simplified any further
They differ in their molecular structures and properties.
(9) Mechanical advantage = force by machine / force applied to machine
0.6 = 600 / F
F = 1000 N
(2) Efficiency = (output / input) x 100
Efficiency = (500 / 2000) x 100
Efficiency = 25%
(4) The overall energy conversion in power plants is chemical to electrical while in dams it is potential to electrical.
(5) Using the formula:
1568 = 40 x 9.81 x h
h = 4.0 m
(6) Potential to electrical
(10) An object raised and held stationary above the ground.
Answer:
the mole fraction of Gas B is xB= 0.612 (61.2%)
Explanation:
Assuming ideal gas behaviour of A and B, then
pA*V=nA*R*T
pB*V=nB*R*T
where
V= volume = 10 L
T= temperature= 25°C= 298 K
pA and pB= partial pressures of A and B respectively = 5 atm and 7.89 atm
R= ideal gas constant = 0.082 atm*L/(mol*K)
therefore
nA= (pA*V)/(R*T) = 5 atm* 10 L /(0.082 atm*L/(mol*K) * 298 K) = 2.04 mole
nB= (pB*V)/(R*T) = 7.89 atm* 10 L /(0.082 atm*L/(mol*K) * 298 K) = 3.22 mole
therefore the total number of moles is
n = nA +nB= 2.04 mole + 3.22 mole = 5.26 mole
the mole fraction of Gas B is then
xB= nB/n= 3.22 mole/5.26 mole = 0.612
xB= 0.612
Note
another way to obtain it is through Dalton's law
P=pB*xB , P = pA+pB → xB = pB/(pA+pB) = 7.69 atm/( 5 atm + 7.89 atm) = 0.612
The red bottle would have the lowest frequency because red light has the longest wavelengths. The light passing through the violet would have the highest frequency because its wavelengths are the shortest.