To determine the number of gas particles in the vessel we add all of the components of the gas. For this, we need to convert the mass to moles by the molar mass. Then, from moles to molecules by the avogadro's number.
1.50x10^-6 ( 1 / 28.01) (6.022x10^23) = 3.22x10^16 molecules CO
6.80x10^-6 ( 1 / 2.02) (6.022x10^23) = 2.03x10 18 molecules H2
Totol gas particles = 2.05x10^18 molecules
Answer:
The boiling point of water at 550 torr will be 91 °C or 364 Kelvin
Explanation:
Step 1: Data given
Pressure = 550 torr
The heat of vaporization of water is 40.7 kJ/mol.
Step 2: Calculate boiling point
⇒ We'll use the Clausius-Clapeyron equation
ln(P2/P1) = (ΔHvap/R)*(1/T1-1/T2)
ln(P2/P1) = (40.7*10^3 / 8.314)*(1/T1 - 1/T2)
⇒ with P1 = 760 torr = 1 atm
⇒ with P2 = 550 torr
⇒ with T1 = the boiling point of water at 760 torr = 373.15 Kelvin
⇒ with T2 = the boiling point of water at 550 torr = TO BE DETERMINED
ln(550/760) = 4895.4*(1/373.15 - 1/T2)
-0.3234 = 13.119 - 4895.4/T2
-13.4424= -4895.4/T2
T2 = 364.2 Kelvin = 91 °C
The boiling point of water at 550 torr will be 91 °C or 364 Kelvin
Assume that the amount needed from the 5% acid is x and that the amount needed from the 6.5% acid is y.
We are given that:
The volume of the final solution is 200 ml
This means that:
x + y = 200
This can be rewritten as:
x = 200 - y .......> equation I
We are also given that:
The concentration of the final solution is 6%
This means that:
5%x + 6.5%y = 6% (x+y)
This can be rewritten as:
0.05 x + 0.065 y = 0.06 (x+y) ............> equation II
Substitute with equation I in equation II and solve for y as follows:
0.05 x + 0.065 y = 0.06 (x+y)
0.05 (200-y) + 0.065 y = 0.06 (200-y+y)
10 - 0.05 y + 0.065 y = 12
0.015y = 12-10 = 2
y = 2/0.015
y = 133.3334 ml
Substitute with the y in equation I to get the x as follows:
x = 200 - y
x = 200 - 133.3334
x = 66.6667 ml
Based on the above calculations:
The amount required from the 5% acid = x = 66.6667 ml
The amount required from the 6.5% acid = y = 133.3334 ml
Hope this helps :)
Elements present in group 18 are known as noble gases. The outermost shell of these elements are completely filled.
18 is the answer