As he began to teach inorganic chemistry, Mendeleev could not find a textbook that met his needs. Since he had already published a textbook on organic chemistry in 1861 that had been awarded the prestigious Demidov Prize, he set out to write another one. The result was Osnovy khimii (1868–71; The Principles of Chemistry), which became a classic, running through many editions and many translations. When Mendeleev began to compose the chapter on the halogen elements (chlorine and its analogs) at the end of the first volume, he compared the properties of this group of elements to those of the group of alkali metals such as sodium. Within these two groups of dissimilar elements, he discovered similarities in the progression of atomic weights, and he wondered if other groups of elements exhibited similar properties. After studying the alkaline earths, Mendeleev established that the order of atomic weights could be used not only to arrange the elements within each group but also to arrange the groups themselves. Thus, in his effort to make sense of the extensive knowledge that already existed of the chemical and physical properties of the chemical elements and their compounds, Mendeleev discovered the periodic law.
Answer : Both solutions contain
molecules.
Explanation : The number of molecules of 0.5 M of sucrose is equal to the number of molecules in 0.5 M of glucose. Both solutions contain
molecules.
Avogadro's Number is
=
which represents particles per mole and particles may be typically molecules, atoms, ions, electrons, etc.
Here, only molarity values are given; where molarity is a measurement of concentration in terms of moles of the solute per liter of solvent.
Since each substance has the same concentration, 0.5 M, each will have the same number of molecules present per liter of solution.
Addition of molar mass for individual substance is not needed. As if both are considered in 1 Liter they would have same moles which is 0.5.
We can calculate the number of molecules for each;
Number of molecules =
;
∴ Number of molecules =
which will be = 
Thus, these solutions compare to each other in that they have not only the same concentration, but they will have the same number of solvated sugar molecules. But the mass of glucose dissolved will be less than the mass of sucrose.
Answer:
The answers to your questions are given below.
Explanation:
Data obtained from the question include:
Mass (M) = 420.0 g
Temperature change (ΔT) = 43.8 °C
Specific heat capacity (C) = 3.52 J/g °C
Heat needed (Q) =...?
The heat needed for the temperature change can be obtained by using the following formula:
Q = MCΔT
Where:
Q is the heat needed measured in joule (J).
M is the mass of substance measured in grams (g)
C is the specific heat capacity of the substance with unit J/g °C.
ΔT is the temperature change measured in degree celsius (°C).
Thus, we can calculate the heat needed to change the temperature as follow:
Q = MCΔT
Q = 420 x 3.52 x 43.8
Q = 64753.92 J
Therefore, the heat needed to cause the temperature change is 64753.92 J
Answer: The molecular formula will be 
Explanation:
If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
Mass of C= 70.6 g
Mass of H = 5.9 g
Mass of O = 23.5 g
Step 1 : convert given masses into moles.
Moles of C =
Moles of H =
Moles of O =
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C = 
For H = 
For O =
The ratio of C : H: O= 4: 4:1
Hence the empirical formula is 
The empirical weight of
= 4(12)+4(1)+1(16)= 68g.
The molecular weight = 136 g/mole
Now we have to calculate the molecular formula.

The molecular formula will be=
Answer : The molarity of the chloride ion in the water is, 5.75 M
Explanation :
As we are given that 16.6 % chloride ion that means 16.6 grams of chloride ion present 100 grams of solution.
First we have to calculate the volume of solution.


Now we have to calculate the molarity of chloride ion.
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:

Thus, the molarity of the chloride ion in the water is, 5.75 M