To determine the number of gas particles in the vessel we add all of the components of the gas. For this, we need to convert the mass to moles by the molar mass. Then, from moles to molecules by the avogadro's number.
1.50x10^-6 ( 1 / 28.01) (6.022x10^23) = 3.22x10^16 molecules CO
6.80x10^-6 ( 1 / 2.02) (6.022x10^23) = 2.03x10 18 molecules H2
Totol gas particles = 2.05x10^18 molecules
<u>Answer:</u> The equilibrium constant for
equation is 
<u>Explanation:</u>
The given chemical equation follows:

The value of equilibrium constant for the above equation is 
Calculating the equilibrium constant for the given equation:

The value of equilibrium constant for the above equation will be:

Hence, the equilibrium constant for
equation is 
Answer:
D. The atoms are arranged with alternating positive and negative charges. When struck, the lattice shifts putting positives against positives and negatives against negatives.
Explanation:
Metallic crystals takes their properties as a result of metallic bonds in between the atoms.
Metallic bond is actually the attraction between the positive nuclei of all the closely packed atoms in the lattice and the electron cloud jointly formed by all the atoms by losing their outermost shell electrons this is by virtue of their low ionization energy.
Physical properties of metals such as malleability, ductility, electrical conductivity, etc can be accounted for by metallic bonds.
Absorbance is related to the concentration of a substance using the Beer-Lambert's Law. According to this law, absorbance is linearly related to concentration. However, this is only true up to a certain concentration depending on the substance. For this case, we assume that the said law is applicable.
A = kC
Using the first conditions, ewe solve for k.
0.26 = k (0.10)
k = 2.6
A = kC
A = 2.6 (0.20) = 0.52
Therefore, the absorbance at a concentration of 0.20 M and wavelength of 500nm is 0.52.
We can solve this without a concrete formula through dimensional analysis. This works by manipulating the units such that you end up with the unit of the final answer. Manipulate them by cancelling units that appear both in the numerator and denominator side. As a result, we must be left with the units of g. The current in A or amperes is equivalent to amount of Coulombs per second. Since this involves Coulombs, we will use the Faraday's constant which is 96,500 C/mol electron. The reaction is:
Cr³⁺(aq) + 3e⁻ --> Cr(s)
This means that for every 3 moles of electron transferred, 1 mole of Chromium metal is plated. The molar mass of Cr: 52 g/mol. The solution is as follows:
Mass of Chromium metal = (8 C/s)(60 s/1 min)(160 min)(1 mol e⁻/96,500 C)(1 mol Cr/3 mol e)(52 g/mol)
<em>Mass of Chromium metal = 13.79 g</em>