Answer:
The answer to your question is below
Explanation:
There are two kinds of mixtures
- Homogeneous is a mixture of two or more elements or compounds and its components can not be distinguished visually.
- Heterogeneous is a mixture of two or more elements or compounds and its components can be distinguished visually.
a cup of tea and sugar homogeneous
peanuts and almonds mixed together in a bowl heterogeneous
a bucket full of sand and gravel heterogeneous
food coloring dissolved in water homogeneous
According to the conversation of mass, mass cannot be created or destroyed. This means whatever is done to one side, must be done to the other.
There are 4 Phosphorus atoms on the left, there must be 4 on the right. To do this, you must multiply the P2O3 by 2 to get 4 Phosphorus atoms and 6 Oxygen atoms. Now to balance the Oxygen atoms, you must multiply the oxygen atoms on the left by 3.
1 P4 + 3 O2 —-> 2 P2O3
Lastly, this equation type is synthesis (combination) because two reactants are becoming a single product.
Answer:
Yes
Explanation:
The possibility of evaporating and condensing is a proof of reversible reaction
Cr{3+} + 3 NaF → CrF3 +
3 Na{+} <span>
First calculate the total mols of NaF.
(0.063 L) x (1.50 mol/L NaF) = 0.0945 mol NaF total </span>
Using stoichiometric
ratio:
<span>0.0945 mol NaF * (1 mol Cr3+ / 3 mol NaF) * (51.9961 g Cr3+/mol) =
1.6379 g Cr3+</span>
Answer:
molecular weight of H2O2 or grams. This compound is also known as Hydrogen Peroxide. The SI base unit for amount of substance is the mole. 1 mole is equal to 1 moles H2O2, or 34.01468 grams.
1 grams H2O2 is equal to 0.029399071224542 mole.
1 grams H2O2 to mol = 0.0294 mol
10 grams H2O2 to mol = 0.29399 mol
20 grams H2O2 to mol = 0.58798 mol
30 grams H2O2 to mol = 0.88197 mol
40 grams H2O2 to mol = 1.17596 mol
50 grams H2O2 to mol = 1.46995 mol
100 grams H2O2 to mol = 2.93991 mol
200 grams H2O2 to mol = 5.87981 mol