Answer: A
Explanation:
Considering the order of filling electrons into orbitals, movement from a higher to a lower energy level results in the emission of a photon with energy equal to the energy difference between the two energy levels. However, the energies of different orbitals are close together for high values of n (principal quantum number). Their relative energies may change significantly when they form ions. This implies that energy levels are better separated and have high differences in energy for low values of n. Hence the answer. This means that photons transiting between these Lowe n levels will posses higher photon energy due to larger energy difference between levels.
Answer:
The two physical/ chemical processes by which carbon dioxide molecules in the air move to the cells of phytoplankton in the ocean are the photosynthesis and the biological carbon pump.
Explanation:
The biological carbon pump is the action of organisms to move carbon during chemical and biological interactions from the surface into the deeper ocean and then to rocks.
The biological carbon pump its composed of three processes, which are the photosynthesis, the gravity and the food web interactions. They are all part of the carbon cycle.
During the photosynthesis, the phytoplankton take up carbon dioxide from the atmosphere that is dissolved in the surface water, and receives the energy from the sun to turn it into glucose and oxygen.
In the cells of the phytoplankton, glucose is transformed into other organic compounds. This material has organic carbon that can end in two ways: it is incorporated to marine organisms during the food web interactions or it can be remineralised forming calcium carbonate in the ocean surface.
The remineralization can be done by many organisms to build its shells or skeletons, or by chemical processes that happen in the ocean. This process allows more carbon dioxide to enter the water and to continue the cycle.
So when marine organisms die, all its organic components sink into the bottom of the ocean and carbon-rich sediments are form. And after millions of years, these sediments turn into rocks after going through chemical and physical phenomenon.
We are going to use this formula :
Q = M*C*ΔT
when Q is the heat released by the material in J
and M is the mass in gram = 1600 g
C is the specific heat capacity of iron = 0.4494 J/g
and ΔT is the changing in temperature = 155 - 25 = 130 °C
So by substitution:
∴ Q = 1600 g * 0.4494 J/g * 130 °C
= 93475 J
∴ The amount of heat released in Joule = 93475 J
Answer: 
Explanation:

cM 0 0
So dissociation constant will be:

Given: c = 0.15 M
pH = 1.86
= ?
Putting in the values we get:
Also ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
![1.86=-log[H^+]](https://tex.z-dn.net/?f=1.86%3D-log%5BH%5E%2B%5D)
![[H^+]=0.01](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.01)
![[H^+]=c\times \alpha](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Ctimes%20%5Calpha)


As ![[H^+]=[ClCH_2COO^-]=0.01](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BClCH_2COO%5E-%5D%3D0.01)

![K_a=1.67\times 10^{-3]](https://tex.z-dn.net/?f=K_a%3D1.67%5Ctimes%2010%5E%7B-3%5D)
Thus the vale of
for the acid is 
Answer:2
Explanation:
Ba(OH)2 contains two oxygen atoms
BaSO4 contains four oxygen atoms.
This means that barium sulphate contains two more oxygen atoms than barium hydroxide in its formula. This is clearly seen from the two formulae shown above.