Answer:
1) 0.009 61 g C; 2) 0.008 00 mol C
Step-by-step explanation:
You know that you will need a balanced equation with masses, moles, and molar masses, so gather all the information in one place.
M_r: 12.01 44.01
C + ½O₂ ⟶ CO₂
m/g: 0.352
1) <em>Mass of C
</em>
Convert grams of CO₂ to grams of C
44.01 g CO₂ = 12.01 g C
Mass of C = 0.352 g CO₂ × 12.01 g C/44.01 g CO₂
Mass of C = 0.009 61 g C
2) <em>Moles of C
</em>
Convert mass of C to moles of C.
1 mol C = 12.01 g C
Moles of C = 0.00961 g C × (1 mol C/12.01 g C)
Moles of C = 0.008 00 mol C
All the carbon comes from Compound A, so there are 0.008 00 mol C in Compound A.
Atoms are made of 3 types of subatomic particles ; protons, neutrons and electrons
protons and neutrons are located inside the nucleus and electrons are found in energy shells around the nucleus. Protons are positively charged, electrons are negatively charged and neutrons are neutral. elements in their ground state are neutral with equal amounts of protons and electrons.
Atomic number is the number of protons. atomic number is characteristic for the element.
atomic number of Be is 4 therefore Be has 4 protons
answer is B. 4
Answer: 1.2044 × 10^24
Explanation:
1 mole of calcium is 40 gram
Based on Avogadro's law:
1 mole of any substance has 6.02 x 10^23 atoms, also 1 mole of calcium is 40gram
So, 1 mole of calcium = 6.02 x 10^23 atoms
Also, 1 mole of calcium is 40gram
40 grams of calcium = 6.02 x 10^23 atoms
80.156 grams of calcium = Z atoms
To get the value of Z, cross multiply:
Z atoms x 40 grams = 6.02 x 10^23 atoms x 80.156 grams
40Z = 482.54 x 10^23
Z = (482.54 x 10^23/40)
Z = 12.06 x 10^23
Put result in standard form
Z = 1.206 x 10^24 atoms
Thus, 1.206 x 10^24 atoms of Ca are present in 80.156 grams of Ca
Answer:
2667 tires are needed to meet the demand of ten homes for one year.
Explanation:
According to the Second Law of Thermodynamics, only a part of generated energy when tires are burned can be utilized due to irreversibilities associated with finite temperature differences. The energy from a tire that can be transformed into electricity (
), measured in kilowatt-hours, is estimated by definition of efficiency:

Where:
- Efficiency, dimensionless.
- Energy liberated by burning, measured in kilowatt-hours.
Given that
and
, the amount of energy per year generated by a tire is:


Now, the amount of tires needed to meet the demand of then homes for one year is:


2667 tires are needed to meet the demand of ten homes for one year.
Answer:
The answer is 20.6 grams.
Explanation:
Molality describes the concentration of a solution. It can be defined as the number of moles of a solute dissolved in 1 kilogram of solvent. Then it is equal to the moles of solute (the substance that dissolves) divided by the kilograms of solvent (the substance used to dissolve):

The molality is expressed in units (
).
So, you can apply the following rule of three with the solution being 0.5 molal: if in 1 kg of solution there are 0.5 moles of solute, in 0.4 kg (400 g, being 1kg = 1000g) how many moles of solute are there?

moles=0.2 moles
Now, you know:
- Na: 23 g/mole
- Br: 80 g/mole
Then, The molar mass of sodium bromide NaBr is
NaBr= 23 g/mole + 80 g/mole= 103 g/mole
Now a new rule of three applies, if in 1 mole of sodium bromide there are 103 grams, in 0.2 mole how much mass is there?

mass= 20.6 grams
<u><em>The answer is 20.6 grams.</em></u>