The basis of finding the answer to this problem is to know the electronic configuration of Fluorine. That would be: <span>[He] 2s</span>²<span> 2p</span>⁵. The valence electrons, which are the outermost electrons of the atom, are the ones that participate in bonding. <em>Since the highest orbital for F is 2p, that means the highest energy occupied would be 2.</em>
Following reaction is involved in present system:
2KMnO4 + 5H2O2 + 3H2SO4 → 2MnSO4 + K2SO4 + 5O2 + 8H2O
From the above balance reaction, it can be seen that 2 moles of KMnO4 is consumed for every 5 moles of H2O2.
Now, percent by mass of hydrogen peroxide in the original solution can be estimated as follows:
percent by mass =

∴percent by mass =

= 4 %
Q1)
the number of moles can be calculated as follows
number of moles = mass present / molar mass
number of moles is the amount of substance.
4.8 g of Ca was added therefore mass present of Ca is 4.8 g
molar mass of Ca is 40 g/mol
molar mass is the mass of 1 mol of Ca
therefore if we substitute these values in the equation
number of moles of Ca = 4.8 g / 40 g/mol = 0.12 mol
0.12 mol of Ca is present
q2)
next we are asked to calculate the number of moles of water present
again we can use the same equation to find the number of moles of water
number of moles = mass present / molar mass
3.6 g of water is present
sum of the products of the molar masses of the individual elements by the number of atoms
H - 1 g/mol and O - 16 g/mol
molar mass of water = (1 g/mol x 2 ) + 16 g/mol = 18 g/mol
molar mass of H₂O is 18 g/mol
therefore number of moles of water = 3.6 g / 18 g/mol = 0.2 mol
0.2 mol of water is present
Answer:
VP as function of time => VP(Ar) > VP(Ne) > VP(He).
Explanation:
Effusion rate of the lighter particles will be higher than the heavier particles. That is, the lighter particles will leave the container faster than the heavier particles. Over time, the vapor pressure of the greater number of heavier particles will be higher than the vapor pressure of the lighter particles.
=> VP as function of time => VP(Ar) > VP(Ne) > VP(He).
Review Graham's Law => Effusion Rate ∝ 1/√formula mass.
Answer:
8.09x10⁻⁵M of Fe³⁺
Explanation:
Using Lambert-Beer law, the absorbance of a sample is proportional to its concentration.
In the problem, the Fe³⁺ is reacting with KSCN to produce Fe(SCN)₃ -The red complex-
The concentration of Fe³⁺ in the reference sample is:
4.80x10⁻⁴M Fe³⁺ × (5.0mL / 50.0mL) = 4.80x10⁻⁵M Fe³⁺
<em>Because reference sample was diluted from 5.0mL to 50.0mL.</em>
<em>That means a solution of 4.80x10⁻⁵M Fe³⁺ gives an absorbance of 0.512</em>
Now, as the sample of the lake gives an absorbance of 0.345, its concentration is:
0.345 × (4.80x10⁻⁵M Fe³⁺ / 0.512) = <em>3.23x10⁻⁵M. </em>
As the solution was diluted from 20.0mL to 50.0mL, the concentration of Fe³⁺ in Jordan lake is:
3.23x10⁻⁵M Fe³⁺ × (50.0mL / 20.0mL) = <em>8.09x10⁻⁵M of Fe³⁺</em>