Answer:
36
Explanation:
Since the sample was undiluted the number of colonies is the number that grew on the nutrient agar which is 36 colonies. If it was diluted for example let say 0.1 ml from a dilution in which 1 ml of the sample was added to 9 ml of water, and it grew colonies then 0.1 ml yielded 6 colonies, 1 ml of the diluted sample will yield 60 colonies and 10 ml will have 600 colonies and therefore the 1 ml undiluted sample will have 600 colonies.
When we can get the Kinetic energy from this formula KE= 1/2 M V^2and we can get the potential energy from this formula PE = M g H
we can set that the kinetic energy at the bottom of the fall equals the potential energy at the top so, KE = PE
1/2 MV^2 = M g H
1/2 V^2 = g H
when V is the velocity, g is an acceleration of gravitational force (9.8 m^2/s) and H is the height of the fall (8 m).
∴ v^2 = 2 * 9.8 * 8 = 156.8
∴ v= √156.8 = 12.5 m/s
Its total charge is zero but for the elements:
Sn===> Sn4+ positive
Cl===> Cl- negative
Answer:
4.78 %.
Explanation:
<em>mass percent is the ratio of the mass of the solute to the mass of the solution multiplied by 100.</em>
<em></em>
<em>mass % = (mass of solute/mass of solution) x 100.</em>
<em></em>
mass of MgSO₄ = 50.0 g,
mass of water = d.V = (0.997 g/mL)(1000.0 mL) = 997.0 g.
mass of the solution = mass of water + mass of MgSO₄ = 997.0 g + 50.0 g = 1047.0 g.
<em>∴ mass % = (mass of solute/mass of solution) x 100</em> = (50.0 g/1047.0 g) x 100 = <em>4.776 % ≅ 4.78 %.</em>
We are given with a compound, Methane (CH4), with a molar
mass of 0.893 mol sample. We are tasked to solve for it's corresponding mass in
g. We need to solve first the molecular weight of Methane, that is
C=12 g/mol
H=1g/mol
CH4= 12 g/mol +1(4) g/mol = 16 g/mol
With 0.893 mol sample, its corresponding mass is
g CH4= 0.893 mol x 16g/mol =14.288 g
Therefore, the mass of methane is 14.288 g