Using ideal gas equation,
P\times V=n\times R\times T
Here,
P denotes pressure
V denotes volume
n denotes number of moles of gas
R denotes gas constant
T denotes temperature
The values at STP will be:
P=100 kPa
T=293 K
R=8.314472 L kPa K⁻¹ mol⁻¹
Number of moles of gas=3.43 mole
Putting all the values in the above equation,

V=83.55 L
So the volume will be 83.55 L.
83.55 L of radon gas would be in 3.43 moles at room temperature and pressure (293 K and 100 kPa).
<h3>Answer:</h3>
Option-C: HCl + H₂O → H₃O⁺ + Cl⁻
Explanation:
Bronsted-Lowery concept of Acid and Base defines Acid as that specie which tends to donate H⁺ (Hydrogen Ion) and bases are those species which accepts H⁺ from Acids.
In selected option, HCl is reacting as Acid as it donates H⁺ to water (lowery bronsted base).
Also, the correspong acid is converted into conjugate base (i.e. Cl⁻) and base is converted into conjugate acid (i.e. H₃O⁺)
Answer:
no he just repeated the steps and made more of the same cleaner my guy
Explanation:
<u>Answer:</u> The new concentration of lemonade is 3.90 M
<u>Explanation:</u>
To calculate the number of moles for given molarity, we use the equation:
.....(1)
Molarity of lemonade solution = 2.66 M
Volume of solution = 473 mL
Putting values in equation 1, we get:

Now, calculating the new concentration of lemonade by using equation 1:
Moles of lemonade = 1.26 moles
Volume of solution = (473 - 150) mL = 323 mL
Putting values in equation 1, we get:

Hence, the new concentration of lemonade is 3.90 M