Answer:
Explanation:
Given parameters:
Initial temperature T₁ = 25.2°C = 25.2 + 273 = 298.2K
Initial pressure = P₁ = 0.6atm
Final temperature = 72.4°C = 72.4 + 273 = 345.4K
Unknown:
Final pressure = ?
Solution:
To solve this problem, we use an adaption of the combined gas law where the volume gas is fixed. This simplification results into:

where P and T are temperatures, 1 and 2 are initial and final temperatures.
Input the parameters and solve;
P₂ = 0.7atm
Although the process varies slightly from one material to another, the general process is as follows:
1) Choose an appropriate container for the solid. This may be a petri dish or a beaker in which you want to prepare the solution of the solid or any other lab equipment.
2) Place the container on a mass balance, then turn the balance on. The mass balance will automatically zero-out the mass of the container, so that any mass that you add on the container will be the mass of the solid. Alternatively, you may first measure the mass of the empty container alone.
3) Add the solid using a lab spatula. The solid should be added more slowly when the reading on the scale comes close to the desired value.
4) Remove the container from the mass balance after the desired amount of solid has been added.
Answer:
145 hours
Explanation:
Since one hour of riding a bicycle takes up 505 kcal of energy. It is also stated that one gram of body fat is equal to 7.70 kcal. Also, it is given that 1 pound of body fat is equal to 454 g.
Hence;
1 Ib= 454 g
21 Ib= 21 × 454/1 = 9534 g
But
1g of body fat = 7.70kcal
9534 g of body fat = 9534 × 7.70 kcal/1 = 73411.8 kcal
If 505 kcal is lost in 1 hour
73411.8 kcal is lost in 73411.8 kcal × 1hour/505k cal = 145 hours
Answer:
( About ) 0.03232 M
Explanation:
Based on the units for this reaction it should be a second order reaction, and hence you would apply the integrated rate law equation "1 / [X] = kt + 1 / [
]"
This formula would be true for the following information -
{
= the initial concentration of X, k = rate constant, [ X ] = the concentration after a certain time ( which is what you need to determine ), and t = time in minutes }
________
Therefore, all we have left to do is plug in the known values. The initial concentration of X is 0.467 at a time of 0 minutes, as you can tell from the given data. This is not relevant to the time needed in the formula, as we need to calculate the concentration of X after 18 minutes ( time = 18 minutes ). And of course k, the rate constant = 1.6
1 / [X] = ( 1.6 )( 18 minutes ) + 1 / ( 0.467 ) - Now let's solve for X
1 / [X] = 28.8 + 1 / ( 0.467 ),
1 / [X] = 28.8 + 2.1413...,
1 / [X] = 31,
[X] = 1 / 31 = ( About ) 0.03232 M
Now for this last bit here you probably are wondering why 1 / 31 is not 0.03232, rather 0.032258... Well, I did approximate one of the numbers along the way ( 2.1413... ) and took the precise value into account on my own and solved a bit more accurately. So that is your solution! The concentration of X after 18 minutes is about 0.03232 M
Answer: Pine trees, strawberry plants, and cacti are all plants. Name and describe three or more characteristics that you think scientists could use to separate these members of the Plantae kingdom into smaller groups.
Answer:
Explanation: Pine trees, strawberry plants, and cacti are all plants. Name and describe three or more characteristics that you think scientists could use to separate these members of the Plantae kingdom into smaller groups.
Answer:
Pine trees, straw Pine trees, strawberry plants, and cacti are all plants. Name and describe three or more characteristics that you think scientists could use to separate these members of the Plantae kingdom into smaller groups.
Answer:
erry plants, and cacti are all plants. Name and describe three or more characteristics that you think scientists could use to separate the Pine trees, strawberry plants, and cacti are all plants. Name and describe three or more characteristics that you think scientists could use to separate these members of the Plantae kingdom into smaller groups.
Answer:
se members of the Plantae kingdom into smaller groups.
Answer:
Pine trees, strawberry plants, and cacti are all plants. Name and describe three or more characteristics that you think scientists could use to separate these members of the Plantae kingdom into smaller groups.
Answer: