Answer:
Conversion of kinetic energy to potential energy (chemo mechanical energy)
In the state of rest, the rubber is a tangled mass of long chained cross-linked polymer that due to their disorderliness are in a state of increased entropy. By pulling on the polymer, the applied kinetic energy stretches the polymer into straight chains, giving them order and reducing their entropy. The stretched rubber then has energy stored in the form of chemo mechanical energy which is a form of potential energy
Conversion of the stored potential energy in the stretched to kinetic energy
By remaining in a stretched condition, the rubber is in a state of high potential energy, when the force holding the rubber in place is removed, due to the laws of thermodynamics, the polymers in the rubber curls back to their state of "random" tangled mass releasing the stored potential energy in the process and doing work such as moving items placed in the rubber's path of motion such as an object that has weight, w then takes up the kinetic energy 1/2×m×v² which can can result in the flight of the object.
Explanation:
The answer is isotonic solution. These are solutions where
the solute concentration in the solution and inside the cells are levelled and consequently
water flows consistently. When red blood cells are positioned in an isotonic
solution the cells would always stay the same.
Answer:
4 g after 58.2 years
0.0156 After 291 years
Explanation:
Given data:
Half-life of strontium-90 = 29.1 years
Initially present: 16g
mass present after 58.2 years =?
Mass present after 291 years =?
Solution:
Formula:
how much mass remains =1/ 2n (original mass) ……… (1)
Where “n” is the number of half lives
to find n
For 58.2 years
n = 58.2 years /29.1 years
n= 2
or 291 years
n = 291 years /29.1 years
n= 10
Put values in equation (1)
Mass after 58.2 years
mass remains =1/ 22 (16g)
mass remains =1/ 4 (16g)
mass remains = 4g
Mass after 58.2 years
mass remains =1/ 210 (16g)
mass remains =1/ 1024 (16g)
mass remains = 0.0156g
Answer:
See explanation below for answers
Explanation:
We know that the balance is tared, so the innitial weight would be zero. Now, let's answer this by parts.
a) mass of displaced water.
In this case all we need to do is to substract the 0.70 with the 0.13 g. so:
mW = 0.70 - 0.13
mW = 0.57 g of water
b) Volume of water.
In this case, we have the density of water, so we use the formula for density and solve for volume:
d = m/V
V = m/d
Replacing:
Vw = 0.57/0.9982
Vw = 0.5710 mL of water
c) volume of the metal weight
In this case the volume would be the volume displaced of water, which would be 0.5710 mL
d) the mass of the metal weight.
In this case, it would be the mass when the metal weight hits the bottom which is 0.70 g
e) density.
using the above formula of density we calculate the density of the metal
d = 0.70 / 0.5710
d = 1.2259 g/mL