answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
balu736 [363]
1 year ago
12

What volume, in ml, of a 0.2089 m ki solution contains enough ki to react exactly with the cu(no3)2 in 43.88 ml of a 0.3842 m so

lution of cu(no3)2?
Chemistry
1 answer:
Triss [41]1 year ago
7 0

The reaction is given as: 2Cu(NO_{3})_{2}+4KI\rightarrow 2CuI+I_{2}+4KNO_{3} Here, two moles of copper nitrate reacts with four moles of potassium iodide to give two moles of copper iodide, one mole of iodine and four moles of potassium nitrate. First, calculate the number of moles of copper nitrate. Number of moles is equal to the product of molarity and volume of solution in litre. Number of moles = 0.3842 M\times 0.04388 L    (1 L =1000 mL)

= 0.016858696 mole

Copper nitrate requires = 0.016858696 \times \frac{4}{2} mole of potassium iodide

= 0.033717392 mole of potassium iodide

Volume of solution in litre = \frac{number of moles}{Molarity}

Thus, volume of potassium iodide is  =\frac{0.033717392}{0.2089}

= 0.1614 L

1 L =1000 mL

Volume of potassium iodide in mL =161.4 mL

Hence, 161.4 mL 0.2089 M potassium iodide consist of sufficient potassium iodide to react with copper nitrate in 3.88 mL of a 0.3842 M solution of copper nitrate .





You might be interested in
Calculate the mass of 3.75 x 10^23 molecules of CaSO4 Please HelpIn a hurry Ill give brainliest
SOVA2 [1]

Answer:

Mass = 84.82 g

Explanation:

Given data:

Number of molecules of CaSO₄ = 3.75× 10²³

Mass in gram = ?

Solution:

Avogadro number:

The given problem will solve by using Avogadro number.

It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.

The number 6.022 × 10²³ is called Avogadro number.

1 mole = 6.022 × 10²³ molecules

3.75× 10²³ molecule × 1 mol / 6.022 × 10²³ molecules

0.623 mol

Mass in gram:

Mass = number of moles × molar mass

Mass = 0.623 mol × 136.14 g/mol

Mass = 84.82 g

7 0
1 year ago
5. A guava with a mass of 0.200 kg has a weight of
Hatshy [7]
It’s b and could I have the Brianliest plzzzz
6 0
2 years ago
Read 2 more answers
An equimolar mixture of N2(g) and Ar(g) is kept inside a rigid container at a constant temperature of 300 K. The initial partial
andrey2020 [161]

Answer:

The final pressure of the gas mixture after the addition of the Ar gas is P₂= 2.25 atm

Explanation:

Using the ideal gas law

PV=nRT

if the Volume V = constant (rigid container) and assuming that the Ar added is at the same temperature as the gases that were in the container before the addition, the only way to increase P is by the number of moles n . Therefore

Inicial state ) P₁V=n₁RT

Final state )  P₂V=n₂RT

dividing both equations

P₂/P₁ = n₂/n₁ → P₂= P₁ * n₂/n₁

now we have to determine P₁ and n₂ /n₁.

For P₁ , we use the Dalton`s law , where p ar1 is the partial pressure of the argon initially and x ar1 is the initial molar fraction of argon (=0.5 since is equimolar mixture of 2 components)

p ar₁ = P₁ * x ar₁  →  P₁ = p ar₁ / x ar₁ = 0.75 atm / 0.5 = 1.5 atm

n₁ = n ar₁ + n N₁ =  n ar₁ + n ar₁ = 2 n ar₁

n₂ = n ar₂ + n N₂ = 2 n ar₁ + n ar₁ = 3 n ar₁

n₂ /n₁ = 3/2

therefore

P₂= P₁ * n₂/n₁ = 1.5 atm * 3/2  = 2.25 atm

P₂= 2.25 atm

8 0
1 year ago
Consider a general reaction A ( aq ) enzyme ⇌ B ( aq ) A(aq)⇌enzymeB(aq) The Δ G ° ′ ΔG°′ of the reaction is − 5.980 kJ ⋅ mol −
Grace [21]

Answer : The value of K_{eq} is, 11.2

The value of \Delta G_{rxn} is -9.04 kJ/mol

Explanation :

The relation between the equilibrium constant and standard Gibbs free energy is:

\Delta G^o=-RT\times \ln K_{eq}

where,

\Delta G^o = standard Gibbs free energy  = -5.980 kJ/mol = -5980 J/mol

R = gas constant = 8.314 J/K.mol

T = temperature = 25^oC=273+25=298K

K_{eq}  = equilibrium constant  = ?

Now put all the given values in the above formula, we get:

\Delta G^o=-RT\times \ln K_{eq}

-5980J/mol=-(8.314J/K.mol)\times (298K)\times \ln K_{eq}

K_{eq}=11.2

Thus, the value of K_{eq} is, 11.2

Now we have to calculate the \Delta G_{rxn}.

The formula used for \Delta G_{rxn} is:

The given reaction is:

A(aq)\rightleftharpoons B(aq)

\Delta G_{rxn}=\Delta G^o+RT\ln Q

\Delta G_{rxn}=\Delta G^o+RT\ln \frac{[B]}{[A]}    ............(1)

where,

\Delta G_{rxn} = Gibbs free energy for the reaction  = ?

\Delta G_^o =  standard Gibbs free energy  = -30.5 kJ/mol

R = gas constant = 8.314\times 10^{-3}kJ/mole.K

T = temperature = 37.0^oC=273+37.0=310K

Q = reaction quotient

[A] = concentration of A = 1.8 M

[B] = concentration of B = 0.55 M

Now put all the given values in the above formula 1, we get:

\Delta G_{rxn}=(-5980J/mol)+[(8.314J/mole.K)\times (310K)\times \ln (\frac{0.55}{1.8})

\Delta G_{rxn}=-9035.75J/mol=-9.04kJ/mol

Therefore, the value of \Delta G_{rxn} is -9.04 kJ/mol

3 0
2 years ago
Reserpine is a natural product isolated from the roots of the shrub Rauwolfia serpentina. It was first synthesized in 1956 by No
liraira [26]

Answer:

  • Molality = 0.066 m
  • Molar mass = 608.36 g/mol

Explanation:

It seems the question is incomplete. However a web search us shows this data:

" Reserpine is a natural product isolated from the roots of the shrub Rauwolfia serpentina. It was first synthesized in 1956 by Nobel Prize winner R. B. Woodward. It is used as a tranquilizer and sedative. When 1.00 g reserpine is dissolved in 25.0 g camphor, the freezing-point depression is 2.63 °C (Kf for camphor is 40 °C·kg/mol). Calculate the molality of the solution and the molar mass of reserpine. "

The <em>freezing-point depression</em> is expressed by:

  • ΔT=Kf * m

We put the data given by the problem and <u>solve for m</u>:

  • 2.63 °C = 40°C·kg/mol * m
  • m = 0.06575 m

For the calculation of the molar mass:<em> Molality</em> is defined as moles of solute per kilogram of solvent:

  • 0.06575 m = Moles reserpine / kg camphor
  • 25.0 g camphor ⇒ 25.0/1000 = 0.025 kg camphor

We<u> calculate moles of reserpine:</u>

  • 0.06575 m = Moles reserpine / 0.025 kg camphor
  • Moles reserpine = 1.64x10⁻³ mol

Finally we use the mass of reserpine and the moles to calculate <u>the molar mass</u>:

  • 1.00 g reserpine / 1.64x10⁻³ mol = 608.36 g/mol

<em>Keep in mind that if the data in your problem is different, the results will be different. But the solving method remains the same.</em>

8 0
2 years ago
Other questions:
  • Photosynthesis is a redox reaction. this means that h2o is _____ during the light reactions and co2 is _____ during the calvin c
    13·2 answers
  • 1a) 2 properties that glass and plastic always share
    10·1 answer
  • Sodium is more reactive than magnesium. true or false
    12·2 answers
  • In every balanced chemical equation, each side of the equation has the same number of _____.
    14·2 answers
  • Question 30
    5·2 answers
  • Draw a structural formula for an alkyne of molecular formula c8h14 that yields 3-ethylhexane on catalytic hydrogenation. click t
    13·2 answers
  • How many moles of lithium are present in a sample that contains 2.45x10^87 formula units of Li2SO4?​
    14·1 answer
  • How many grams of copper (I) chloride can be produced from the reaction of 73.5 g of copper (I) oxide with hydrochloric acid acc
    13·1 answer
  • 3.) A 208 g sample of sodium-24 decays to 13.0 g of sodium-24 within 60.0 hours.
    7·1 answer
  • The concept of resonance describes molecular structures Question 17 options: that have several different geometric arrangements.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!