Answer : The final temperature of the solution in the calorimeter is, 
Explanation :
First we have to calculate the heat produced.

where,
= enthalpy change = -44.5 kJ/mol
q = heat released = ?
m = mass of
= 1.52 g
Molar mass of
= 40 g/mol

Now put all the given values in the above formula, we get:


Now we have to calculate the final temperature of solution in the calorimeter.

where,
q = heat produced = 1.691 kJ = 1691 J
m = mass of solution = 1.52 + 35.5 = 37.02 g
c = specific heat capacity of water = 
= initial temperature = 
= final temperature = ?
Now put all the given values in the above formula, we get:


Thus, the final temperature of the solution in the calorimeter is, 
Physical changes occur when the properties of a substance are retained and/or the materials can be recovered after the change. Chemical changes involve the formation of a new substance. Formation of a gas, solid, light, or heat are possible evidence of chemical change.
The question is incomplete, the complete question is;
Which of the following is most likely a heavier stable nucleus? (select all that apply) Select all that apply: A nucleus with a neutron:proton ratio of 1.05 A nucleus with a A nucleus with a neutron:proton ratio of 1.49 The nucleus of Sb-123 A nucleus with a mass of 187 and an atomic number of 75
Answer:
A nucleus with a A nucleus with a neutron:proton ratio of 1.49
A nucleus with a mass of 187 and an atomic number of 75
Explanation:
The stability of a nucleus depends on the number of neutrons and protons present in the nucleus. For many low atomic number elements, the number of protons and number of neutrons are equal. This implies that the neutron/proton ratio = 1
Elements with higher atomic number tend to be more stable if they have a slight excess of neutrons as this reduces the repulsion between protons.
Generally, the belt of stability for chemical elements lie between and N/P ratio of 1 to an N/P ratio of 1.5.
Two options selected have an N/P ratio of 1.49 hence they are heavy stable elements.
Concentration is the number of moles of solute in a fixed volume of solution
Concentration(c) = number of moles of solute(n) / volume of solution (v)
25.0 mL of water is added to 125 mL of a 0.150 M LiOH solution and solution becomes more diluted.
original solution molarity - 0.150 M
number of moles of LiOH in 1 L - 0.150 mol
number of LiOH moles in 0.125 L - 0.150 mol/ L x 0.125 L = 0.01875 mol
when 25.0 mL is added the number of moles of LiOH will remain constant but volume of the solution increases
new volume - 125 mL + 25 mL = 150 mL
therefore new molarity is
c = 0.01875 mol / 0.150 L = 0.125 M
answer is 0.125 M