Answer:
Here's what I get.
Explanation:
The frequency of a vibration depends on the strength of the bond (the force constant).
The stronger the bond, the more energy is needed for the vibration, so the frequency (f) and the wavenumber increase.
Acetophenone
Resonance interactions with the aromatic ring give the C=O bond in acetophenone a mix of single- and double-bond character, and the bond frequency = 1685 cm⁻¹.
p-Aminoacetophenone
The +R effect of the amino group increases the single-bond character of the C=O bond. The bond lengthens, so it becomes weaker.
The vibrational energy decreases, so wavenumber decreases to 1652 cm⁻¹.
p-Nitroacetophenone
The nitro group puts a partial positive charge on C-1. The -I effect withdraws electrons from the acetyl group.
As electron density moves toward C-1, the double bond character of the C=O group increases.
The bond length decreases, so the bond becomes stronger, and wavenumber increases to 1693 cm¹.
Answer:
The empirical formula of compound is C₂H₆O.
Explanation:
Given data:
Mass of carbon = 12 g
Mass of hydrogen = 3 g
Mass of oxygen = 8 g
Empirical formula of compound = ?
Solution:
First of all we will calculate the gram atom of each elements.
no of gram atom of carbon = 12 g / 12 g/mol = 1 g atoms
no of gram atom of hydrogen = 3 g / 1 g/mol = 3 g atoms
no of gram atom of oxygen = 8 g / 16 g/mol = 0.5 g atoms
Now we will calculate the atomic ratio by dividing the gram atoms with the 0.5 because it is the smallest number among these three.
C:H:O = 1/0.5 : 3/0.5 : 0.5/0.5
C:H:O = 2 : 6 : 1
The empirical formula of compound will be C₂H₆O
Answer: The millimoles of sodium carbonate the chemist has added to the flask are 256
Explanation:
Molarity is defined as the number of moles dissolved per liter of the solution.
To calculate the number of moles for given molarity, we use the equation:
.....(1)
Molarity of
solution = 1.42 M
Volume of solution = 180.0 mL
Putting values in equation 1, we get:

Thus the millimoles of sodium carbonate the chemist has added to the flask are 256.
Answer:
= 459.1 nm
This wavelength corresponds to yellow color and thus gold has warm yellow color.
Explanation:
Given that:- Energy = 2.7 eV
Energy in eV can be converted to energy in J as:
1 eV = 1.602 × 10⁻¹⁹ J
So, Energy = 
Considering:-
Where,
h is Plank's constant having value
c is the speed of light having value
is the wavelength of the light
So,

= 459.1 nm
This wavelength corresponds to yellow color and thus gold has warm yellow color.
Answer:
Explanation:
di) number of protons is 12 for all, number of neutrons is 13 for mg- 25 and 14 for mg-26