answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolbaska11 [484]
2 years ago
10

Phenol, c6h5oh, is a stronger acid than methanol, ch3oh, even though both contain an o]h bond. Draw the structures of the anions

resulting from loss of h1 from phenol and methanol, and use resonance structures to explain the difference in acidity.

Chemistry
1 answer:
timurjin [86]2 years ago
8 0

In resonance structures, the chemical connectivity in the molecule is same but the distribution of electrons are different around the structure.  They are created by moving electrons in double or triple bonds, and not atoms.

Phenol, C_6H_5OH and methanol, CH_3OH both are alcohols  that contain an -OH group attached to carbon atom.

Due to loss of 1 H from phenol, it forms phenoxide anion and due to presence of double bond in the benzene ring the negative charge on the oxygen atom (which represents electrons) will resonate with double bonds of benzene ring as shown in the image. The resonance-stabilized phenoxide ion is more stable. Whereas when methanol lose 1 H it forms methoxide anion and there are no such electrons present in the structure of methoxide that will result in the movement of electron. Since, due to resonance-stabilized phenoxide ion is more stable than methoxide ion, so it is a stronger acid.

The structures of the anions resulting from loss of 1 H from phenol and methanol is shown in the image.

You might be interested in
Substitution of an amino group on the para position of acetophenone shifts the cjo frequency from about 1685 to 1652 cm−1 , wher
cluponka [151]

Answer:

Here's what I get.

Explanation:

The frequency of a vibration depends on the strength of the bond (the force constant).

The stronger the bond, the more energy is needed for the vibration, so the frequency (f) and the wavenumber increase.

Acetophenone

Resonance interactions with the aromatic ring give the C=O bond in acetophenone a mix of single- and double-bond character, and the bond frequency = 1685 cm⁻¹.

p-Aminoacetophenone

The +R effect of the amino group increases the single-bond character of the C=O bond. The bond lengthens, so it becomes weaker.

The vibrational energy decreases, so wavenumber decreases to 1652 cm⁻¹.

p-Nitroacetophenone

The nitro group puts a partial positive charge on C-1. The -I effect withdraws electrons from the acetyl group.

As electron density moves toward C-1, the double bond character of the C=O group increases.

The bond length decreases, so the bond becomes stronger, and wavenumber  increases to 1693 cm¹.

6 0
2 years ago
A 23.0g sample of a compound contains 12.0g of C, 3.0g of H, and 8.0g of O.What the empirical formula of the compound
Kryger [21]

Answer:

The empirical formula of compound is C₂H₆O.

Explanation:

Given data:

Mass of carbon = 12 g

Mass of hydrogen = 3 g

Mass of oxygen = 8 g

Empirical formula of compound = ?

Solution:

First of all we will calculate the gram atom of each elements.

no of gram atom of carbon = 12 g / 12 g/mol = 1 g atoms

no of gram atom of hydrogen = 3 g / 1 g/mol = 3 g atoms

no of gram atom of oxygen = 8 g / 16 g/mol = 0.5 g atoms

Now we will calculate the atomic ratio by dividing the gram atoms with the 0.5 because it is the smallest number among these three.

          C:H:O  =     1/0.5  :   3/0.5  :   0.5/0.5

          C:H:O  =     2      :     6      :     1

The empirical formula of compound will be C₂H₆O

5 0
2 years ago
A chemist adds 180.0 mL of a 1.42M sodium carbonate (Na CO,) solution to a reaction flask. Calculate the millimoles of sodium ca
svet-max [94.6K]

Answer: The millimoles of sodium carbonate the chemist has added to the flask are 256

Explanation:

Molarity is defined as the number of moles dissolved per liter of the solution.

To calculate the number of moles for given molarity, we use the equation:

\text{Molarity of the solution}=\frac{\text{milli moles of solute}}{\text{Volume of solution in ml}}     .....(1)

Molarity of BaCl_2 solution = 1.42 M

Volume of solution = 180.0 mL

Putting values in equation 1, we get:

1.42M=\frac{\text{milli moles of }BaCl_2}{180.0ml}\\\\\text{milli moles of }BaCl_2}={1.42M\times 180.0ml}=256milli mol

Thus the millimoles of sodium carbonate the chemist has added to the flask are 256.

6 0
2 years ago
The energy difference between the 5d and 6s sublevels in gold accounts for its color. Assuming this energy difference is about 2
sergejj [24]

Answer:

\lambda=459.1\times 10^{-7}\ m = 459.1 nm

This wavelength corresponds to yellow color and thus gold has warm yellow color.

Explanation:

Given that:- Energy = 2.7 eV

Energy in eV can be converted to energy in J as:

1 eV = 1.602 × 10⁻¹⁹ J

So, Energy = 2.7\times 1.602\times 10^{-19}\ J=4.33\times 10^{-19}\ J

Considering:-

E=\frac{h\times c}{\lambda}

Where,  

h is Plank's constant having value 6.626\times 10^{-34}\ Js

c is the speed of light having value 3\times 10^8\ m/s

\lambda is the wavelength of the light

So,  

4.33\times 10^{-19}=\frac{6.626\times 10^{-34}\times 3\times 10^8}{\lambda}

4.33\times \:10^{26}\times \lambda=1.99\times 10^{20}

\lambda=459.1\times 10^{-7}\ m = 459.1 nm

This wavelength corresponds to yellow color and thus gold has warm yellow color.

7 0
2 years ago
Please help i need to do good in this class
ioda

Answer:

Explanation:

di) number of protons is 12 for all, number of neutrons is 13 for mg- 25 and 14 for mg-26

8 0
1 year ago
Other questions:
  • Samantha is making a vegetable soup that contains carrots, beans, water, salt, pepper, bits of ham, and onions. the soup has to
    9·1 answer
  • The diagrams show gases that are stored in two separate but similar containers.
    9·2 answers
  • the electron affinity of nitrogen is lower (less negative) than that of both carbon and oxygen. This trend is best explained by
    6·1 answer
  • For the atoms that do not follow the octet rule state how many electrons surround these atoms. Express your answers as integers
    15·1 answer
  • According to the equation below, how many moles of Ca(OH)2 are required to react with 1.36 mol H3PO4 to produce Ca3(PO4)2? 3Ca(O
    10·1 answer
  • What is the final temperature of the solution formed when 1.52 g of NaOH is added to 35.5 g of water at 20.1 °C in a calorimeter
    7·1 answer
  • 7.47 Two atoms have the electron configurations 1s22s22p6 and 1s22s22p63s1. The first ionization energy of one is 2080 kJ/mol an
    6·1 answer
  • The lock-and-key mechanism refers to
    11·2 answers
  • [Ca2+] within the endoplasmic reticulum (ER) is 10-3M. Cytosolic [Ca2+] is 10-7M. Lysosomes in mammalian cells have an internal
    12·1 answer
  • A container of hydrogen at 172 kPa was decreased to 85.0 kPa producing a new volume of 3L. What was the original volume?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!