Explanation:
According to Charle's law, at constant pressure the volume of an ideal gas is directly proportional to the temperature.
That is, 
Hence, it is given that
is 3.50 liters,
is 20 degree celsius, and
is 100 degree celsius.
Therefore, calculate
as follows.


= 17.5 liter
Thus, we can conclude that volume of gas required at 100 degree celsius is 17.5 liter.
Answer:
The correct solution will be "+3".
Explanation:
The given values are:
Number of protons
= 13
Number of neutrons
= 14
Number of electrons
= 10
As we know,
⇒ 
On putting the estimated values, we get
⇒ 
⇒ 
Aluminum has a chemical formula of Al, while diatomic bromine has a chemical formula of Br₂. The balanced chemical reaction is shown below:
<em>2 Al (s) + 3 Br₂ (l) → 2 AlBr₃ (s)</em>
The solid product is called Dibromoaluminum. The stoichiometric coefficients are used to balance the reaction to obey the Law of Conservation of Mass.
Answer:
The final volume is 39.5 L = 0.0395 m³
Explanation:
Step 1: Data given
Initial temperature = 200 °C = 473 K
Volume = 0.0250 m³ = 25 L
Pressure = 1.50 *10^6 Pa
The pressure reduce to 0.950 *10^6 Pa
The temperature stays constant at 200 °C
Step 2: Calculate the volume
P1*V1 = P2*V2
⇒with P1 = the initial pressure = 1.50 * 10^6 Pa
⇒with V1 = the initial volume = 25 L
⇒with P2 = the final pressure = 0.950 * 10^6 Pa
⇒with V2 = the final volume = TO BE DETERMINED
1.50 *10^6 Pa * 25 L = 0.950 *10^6 Pa * V2
V2 = (1.50*10^6 Pa * 25 L) / 0.950 *10^6 Pa)
V2 = 39.5 L = 0.0395 m³
The final volume is 39.5 L = 0.0395 m³
The molarity is the number of moles in 1 L of the solution.
The mass of NH₃ given - 2.35 g
Molar mass of NH₃ - 17 g/mol
The number of NH₃ moles in 2.35 g - 2.35 g / 17 g/mol = 0.138 mol
The number of moles in 0.05 L solution - 0.138 mol
Therefore number of moles in 1 L - 0.138 mol / 0.05 L x 1L = 2.76 mol
Therefore molarity of NH₃ - 2.76 M