The answer is
<span>The density (D) is quotient of mass (m) and
volume (V):
</span>

The unit is g/cm³
It is given:
m = 1.62 kg = 1620 g
V = 205 mL = 205 cm³
D = ?
Thus:

The density of the goblet is 7.90 g/cm³.
Answer:
If the pressure of the system increases then the boiling point will increase.
If the pressure of the system decreases then the boiling point will decrease. If there is no change in pressure then the boiling point will remain constant.
Explanation:
Instrumental methods of analysis rely on machines.The visualization of single molecules, single biological cells, biological tissues and nanomaterials is very important and attractive approach in analytical science.
There are several different types of instrumental analysis. Some are suitable for detecting and identifying elements, while others are better suited to compounds. In general, instrumental methods of analysis are:
-Fast
-Accurate (they reliably identify elements and compounds)
-Sensitive (they can detect very small amounts of a substance in a small amount of sample)
1. What do they have in common?
As mentioned in the problem, these gases are present in equal amounts. So, that would infer that they are common in terms of their mass. Also, it is specified that the temperature is 25°C. Connected to that is the average kinetic energy, which is directly proportional. Hence, they are also common in temperature and average kinetic energy.
2. What are the differences?
They differ in type, of course. Also, they differ in average velocities which is a factor of temperature of molar mass. Since they are 3 different types of gases with different molar masses, they would also differ in their average velocities.