I'm certain it's "D"
...because it can't be "A" or "B" because solubility IS a property but to actually determine whether these two substances are the same or different we would need at least two-three properties (like boiling point or specific heat).
and it can't be "C" because the melting point is just simply irrelevant when comparing the solubility of two substances.
Answer:
(A) The work done by the system is -101.325J
(B) The workdone by the system is -90.75J
Explanation:
(A) Workdone = -PΔV
Given that A = 100cm2 = 0.01m2
distance d = 10cm = 0.1m
ΔV= Area × distance
ΔV= 0.01 ×0.1
ΔV = 0.001m3
P= external pressure = 1atm = 101325Pa
Workdone = -0.001 × 101325
W= - 101.325Pa m3
1Pam3 = 1J
Therefore W = - 101.325J
The work done on the system is -101.325J
(B) Workdone = -PΔV
Given that A = 50cm2 = 0.005m2
distance d = 15cm = 0.15m
ΔV= Area × distance
ΔV= 0.005×0.15
ΔV = 0.00075m3
P=121kPa = 121000Pa
W= - 121000 × 0.00075
W= -90.75Pa m3
1Pam3 = 1J
W = - 90.75J
The woekdone by the system is -90.75J
Answer:
c. 6.
Explanation:
Looking at the description given in the question, the elements involved must belong to the p- block of the periodic table and must be in period 5. They also must possess valence electrons in the 5p- orbital.
Now if we look at the p- block of period 5, the following elements satisfy these requirements; Sr, In, Sn, Sb, Te and I.
Hence there are six of such elements.
Answer : 1721.72 g/qt are in 18.2 g/cL
Explanation :
As we are given: 18.2 g/cL
Now we have to convert 18.2 g/cL to g/qt.
Conversions used are:
(1) 1 L = 100 cL
(2) 1 L = 1000 mL
(3) 1 qt = 946 qt
The conversion expression will be:


Therefore, 1721.72 g/qt are in 18.2 g/cL
<u>Answer:</u> The enthalpy of the reaction for the production of
is coming out to be -74.9 kJ
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(CH_4(g))})]-[(1\times \Delta H^o_f_{(C(s))})+(2\times \Delta H^o_f_{(H_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CH_4%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C%28s%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-74.9))]-[1\times 0)+(2\times 0)]\\\\\Delta H^o_{rxn}=-74.9kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-74.9%29%29%5D-%5B1%5Ctimes%200%29%2B%282%5Ctimes%200%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_%7Brxn%7D%3D-74.9kJ)
Hence, the enthalpy of the reaction for the production of
is coming out to be -74.9 kJ