answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mezya [45]
2 years ago
6

Albus Dumbledore provides his students with a sample of 19.3 g of sodium sulfate. How many oxygen atoms are in this sample

Chemistry
1 answer:
Dimas [21]2 years ago
3 0

Answer:

<em>3.27·10²³ atoms of O</em>

Explanation:

To figure out the amount of oxygen atoms in this sample, we must first evaluate the sample.

The chemical formula for sodium sulfate is <em>Na₂SO₄, </em>and its molar mass is approximately 142.05\frac{g}{mol}.

We will use stoichiometry to convert from our mass of <em>Na₂SO₄ </em>to moles of <em>Na₂SO₄</em>, and then from moles of <em>Na₂SO₄ </em>to moles of <em>O </em>using the mole ratio; then finally, we will convert from moles of <em>O </em>to atoms of <em>O </em>using Avogadro's constant.

19.3g <em>Na₂SO₄</em> · \frac{1 mol Na^2SO^4}{142.05g Na^2SO^4} · \frac{4 mol O}{1 mol Na^2SO^4} ·\frac{6.022x10^2^3}{1 mol O}

After doing the math for this dimensional analysis, you should get a quantity of approximately <em>3.27·10²³ atoms of O</em>.

You might be interested in
Calculate ΔH and ΔStot when two copper blocks, each of mass 10.0 kg, one at 100°C and the other at 0°C, are placed in contact in
ira [324]

Explanation:

The given data is as follows.

        m = 10.0 kg = 10,000 g    (as 1 kg = 1000 g)

      Initial temp. of block 1, T_{1} = 100^{o}C = (100 + 273) K = 373 K  

      Initial temp. of block 2, T_{2} = 0^{o}C = (0 + 273) K = 273 K

So, heat released by block 1 = heat gained by block 2

            mC \Delta T = mC \times \Delta T

  10000 g \times 0.385 \times (T_{f} - 100)^{o}C = 10000 g \times 0.385 \times (0 - T_{f})^{o}C

                  T_{f} - 100^{o}C = 0^{o}C - T_{f}    

                   2T_{f} = 100^{o}C

                          T_{f} = 50^{o}C

Convert temperature into kelvin as (50 + 273) K = 323 K.              

Also, we know that the relation between enthalpy and temperature change is as follows.

             \Delta H = mC \Delta T

                         = 10000 g \times 0.385 J/K g \times 323 K

                         = 1243550 J

or,                     = 1243.5 kJ

Now, calculate entropy change for block 1 as follows.

     \Delta S_{1} = mC ln \frac{T_{f}}{T_{i}}

            = 10000 g \times 0.385 J/K g \times ln \frac{323}{373}

            = 10000 g \times 0.385 J/K g \times -0.143

            = -554.12 J/K

Now, entropy change for block 2 is as follows.

   \Delta S_{2} = mC ln \frac{T_{f}}{T_{i}}

           = 10000 g \times 0.385 J/K g \times ln \frac{323}{273}

           = 10000 g \times 0.385 J/K g \times 0.168

           = 647.49 J/K

Hence, total entropy will be sum of entropy change of both the blocks.

            \Delta S_{total} = \Delta S_{1} + \Delta S_{2}

                       = -554.12 J/K + 647.49 J/K

                       = 93.37 J/K

Thus, we can conclude that for the given reaction \Delta H is 1243.5 kJ and \Delta S_{total} is 93.37 J/K.

6 0
2 years ago
An atom of 120In has a mass of 119.907890 amu. Calculate the mass defect (deficit) in amu/atom. Use the masses: mass of 1H atom
diamong [38]

Answer:

a

Explanation:

answer is a on edg

6 0
2 years ago
A medical lab is testing a new anticancer drug on cancer cells. The drug stock solution concentration is 1.5×10−9m, and 1.00 ml
Elis [28]

The concentration of the drug stock solution is 1.5*10^-9 M i.e. 1.5 * 10^-9 moles of the drug per Liter of the solution

Therefore, the number of moles present in 1 ml i.e. 1*10^-3 L of the solution would be =  1 *10^-3 L * 1.5 * 10^-9 moles/1 L = 1.5 * 10^-12 moles

1 mole of the drug will contain 6.023*10^23 drug molecules

Therefore, 1.5*10^-12 moles of the drug will correspond to :

    1.5 * 10^-12 moles * 6.023*10^23 molecules/1 mole = 9.035 * 10^11 molecules

The number of cancer cells = 2.0 * 10^5

Hence the ratio = drug molecules/cancer cells

                          = 9.035 *10^11/2.0 *10^5

                          = 4.5 * 10^6

8 0
2 years ago
Read 2 more answers
Water treatment plants commonly use chlorination to destroy bacteria. a byproduct is chloroform (chcl3), a suspected carcinogen
antiseptic1488 [7]
<span>100. ppb of chcl3 in drinking water means  100 g of CHCl3 in 1,000,0000,000 g of water

Molarity, M

M = number of moles of solute / volume of solution in liters

number of moles of solute = mass of CHCl3 / molar mass of CHCl3

molar mass of CHCl3 = 119.37 g/mol

number of moles of solute = 100 g / 119.37 g/mol = 0.838 mol

using density of water = 1 g/ ml => 1,000,000,000 g = 1,000,000 liters

M = 0.838 / 1,000,000 = 8.38 * 10^ - 7 M <----- answer

Molality, m

m = number of moles of solute / kg of solvent

number of moles of solute = 0.838

kg of solvent = kg of water = 1,000,000 kg

m = 0.838 moles / 1,000,000 kg = 8.38 * 10^ - 7 m <----- answer

mole fraction of solute, X solute

X solute = number of moles of solute / number of moles of solution

number of moles of solute = 0.838

number of moles of solution = number of moles of solute + number of moles of solvent

number of moles of solvent = mass of water / molar mass of water = 1,000,000,000 g / 18.01528 g/mol = 55,508,435 moles

number of moles of solution = 0.838 moles + 55,508,435 moles = 55,508,436 moles

X solute = 0.838 / 55,508,435 = 1.51 * 10 ^ - 8 <------ answer

mass percent, %

% = (mass of solute / mass of solution) * 100 = (100g / 1,000,000,100 g) * 100 =

% = 10 ^ - 6 % <------- answer
</span>
7 0
2 years ago
Read 2 more answers
Type the correct answer in the box. Express your answer to three significant figures.
satela [25.4K]

Answer:

The partial pressure of argon in the jar is 0.944 kilopascal.

Explanation:

Step 1: Data given

Volume of the jar of air = 25.0 L

Number of moles argon = 0.0104 moles

Temperature = 273 K

Step 2: Calculate the pressure of argon with the ideal gas law

p*V = nRT

p = (nRT)/V

⇒ with n = the number of moles of argon = 0.0104 moles

⇒ with R = the gas constant = 0.0821 L*atm/mol*K

⇒ with T = the temperature = 273 K

⇒ with V = the volume of the jar = 25.0 L

p = (0.0104 * 0.0821 * 273)/25.0

p = 0.00932 atm

1 atm =101.3 kPa

0.00932 atm = 101.3 * 0.00932 = 0.944 kPa

The partial pressure of argon in the jar is 0.944 kilopascal.

5 0
2 years ago
Other questions:
  • Which statement is true concerning the reaction N(g) + N(g) → N2(g) + energy?
    12·1 answer
  • What is the function of an arrow ( -7) and a plus sign ( ) in a chemical equation?
    12·1 answer
  • A certain mass of carbon reacts with 23.3 g of oxygen to form carbon monoxide. ________ grams of oxygen would react with that sa
    10·2 answers
  • An allergy medicine is usually stored in a cabinet at the room temperature where it’s molecules move around each other. By mista
    12·1 answer
  • Calculate the nuclear binding energy for 5525mn in megaelectronvolts per nucleon (mev/nucleon). express your answer numerically
    10·1 answer
  • A student sets up the following equation to convert a measurement. (The stands for a number the student is going to calculate.)
    5·1 answer
  • How much energy must be added to a bowl of 125popcorn kernels in order for them to reach a popping temperature of 175°C? Assume
    8·1 answer
  • Rubbing alcohol contains 615g of isopropanol (C3H7OH) per liter (aqueous solution). Calculate the molality of this solution. Giv
    12·1 answer
  • A phosphorus atom with 4 bonds has a charge of ___.
    6·1 answer
  • Imagine you had to sort all of the living things on earth into groups. How would you sort them?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!