Answer:
Zirconium tetrafluoride has 4 atoms of flourine and 1 atom of Zirconium
Answer:
for this reaction at this temperature is 0.029
Explanation:
Moles of
= 2.00 mole
Volume of solution = 4.00 L
Initial concentration of
The given balanced equilibrium reaction is,

Initial conc. 0.500 M 0 M 0 M
At eqm. conc. (0.500-2x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[H_2\times [Br_2]}{[HBr]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5Ctimes%20%5BBr_2%5D%7D%7B%5BHBr%5D%5E2%7D)
Equilibrium concentration of
= x = 0.0955 M
Now put all the given values in this expression, we get :


Thus
for this reaction at this temperature is 0.029
Answer:-
molecules.
Solution:- The grams of tetrabromomethane are given and it asks to calculate the number of molecules.
It is a two step unit conversion problem. In the first step, grams are converted to moles on dividing the grams by molar mass.
In second step, the moles are converted to molecules on multiplying by Avogadro number.
Molar mass of
= 12+4(79.9) = 331.6 g per mol
let's make the set up using dimensional analysis:

=
molecules
So, there will be
molecules in 250 grams of
.
<span>Answer:
Graham's law of gaseous effusion states that the rate of effusion goes by the inverse root of the gas' molar mass.
râšM = constant
Therefore for two gases the ratio rates is given by:
r1 / r2 = âš(M2 / M1)
For Cl2 and F2:
r(Cl2) / r(F2) = âš{(37.9968)/(70.906)}
= 0.732 (to 3.s.f.)</span>
Explanation:
It is known that efficiency is denoted by
.
The given data is as follows.
= 0.82,
= (21 + 273) K = 294 K
= 200 kPa,
= 1000 kPa
Therefore, calculate the final temperature as follows.
0.82 =
= 1633 K
Final temperature in degree celsius =
= 
Now, we will calculate the entropy as follows.

For 1 mole, 
It is known that for
the value of
= 0.028 kJ/mol.
Therefore, putting the given values into the above formula as follows.

= 
= 0.0346 kJ/mol
or, = 34.6 J/mol (as 1 kJ = 1000 J)
Therefore, entropy change of ammonia is 34.6 J/mol.