Answer:
Explanation:
1.)azeotrope is a mixture of two or more liquid components under constant boiling, it has a constant mole fraction composition of present component which can be homogeneous or heterogeneous.
2.)the condition which it's best performed when there's liquids that is non-volatile which boils higher than other liquids with at least 26 degrees .
steam azentropic distillation
3.During a steam distillation, How to know if the organic compound is still coming over is when you see the solution becoming cloudy or when there is existence of two layers.
4.)The end of the steam distillation, the receiving flask should contain two layers of liquid, and the chemical identity of these two liquids most contain
A.) Layers that are mostly water H2O
B.) Layers that are mostly products
5.)What is the purpose of adding 10% sodium carbonate solution to the distillate if it is acidic to litmus is to neutralize the distillate.
Let's assume that the gas has ideal gas behavior.
Then we can use ideal gas equation,
PV = nRT
Where, <span>
P = Pressure of the gas (Pa)
V = volume of the gas (m³)
n = number of moles (mol)
R = Universal gas constant (8.314 J mol</span>⁻¹ K⁻¹)<span>
T = temperature in Kelvin (K)
<span>
The given data for the </span></span>gas is,<span>
P = 2.8 atm = 283710 Pa
V = 98 L = 98 x 10</span>⁻³ m³<span>
T = 292 K
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
n = ?
By applying the formula,
283710 Pa x </span>98 x 10⁻³ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 292 K
<span> n = 11.45 mol
Hence, moles of gas is </span>11.45 mol.
Procaine hydrochloride ( = 272.77 g/mol) is used as a local anesthetic. Calculate the molarity of a 4.666 m solution which has a density of 1.1066 g/ml.
molarity = Moles of solute / volume of solution
Molarity = m d / [ 1 + (mW / 1000)]
Molarity = 4.666 X 1.1066 / [ 1 + (4.666 X 272.77 / 1000)]
Molarity = 5.16 / 2.272= 2.271 M
The answer is isotonic solution. These are solutions where
the solute concentration in the solution and inside the cells are levelled and consequently
water flows consistently. When red blood cells are positioned in an isotonic
solution the cells would always stay the same.
Answer:
d. increases PFK activity, decreases FBPase activity
Explanation:
Fructose-2,6-bisphophate is formed by the phosphorylation of fructose-6-phosphate catalyzed by phosphofructokinase-2, PFK-2.
Fructose-2,6-bisphophate functions as an allosteric effector of the enzymes phosphofructokinase-1, PFK-1 and fructose-1,6-bisphosphatase, FBPase.
Fructose-2,6-bisphophate has opposite effects on the enzymes, PFK-1 and FBPase. When it binds to the allosteric site of the enzyme, PFK-1, it increases the enzymes's activity by increasing its affinity for its substrate fructose-6-phosphate and reduces its affinity for its allosteric inhibitors ATP and citrate. However, when it binds to FBPase, it reduces its activity by reducing its affinity for glucose, its substrate