answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natima [27]
1 year ago
12

ANSWER FOR: How did the lab activities help you answer the lesson question "How do the processes of conduction, convection, and

radiation help distribute energy on Earth?" What did you learn from conducting this lab?
Here are the responses.

Conduction transfers heat between two materials that are touching, such as foil and chocolate pieces, or particles, such as the atoms in foil.

Convection allows heat to be transferred in liquids, like water.

Radiation transfers heat from a light bulb to paper.

Conduction, convection, and radiation move energy from the Sun to Earth and throughout Earth.
Chemistry
2 answers:
Alenkinab [10]1 year ago
8 0

<u>Answer</u>: Conduction, convection, and radiation move energy from the Sun to Earth and throughout Earth.

Without more information about the experiment itself, I would choose the above answer as correct. All the other statements are correct, however none of them relates to the earth distribution processes on Earth. The last statement does.

Oxana [17]1 year ago
3 0

Conduction transfers heat between two materials that are touching, such as foil and chocolate pieces, or particles, such as the atoms in foil.Convection allows heat to be transferred in liquids, like water.Radiation transfers heat from a light bulb to paper.Conduction, convection, and radiation move energy from the Sun to Earth and throughout Earth.

You might be interested in
The closeness of particles of gas and their low speeds allow intermolecular forces to become important at certain pressures and
Ipatiy [6.2K]
The statement above is a limitation of the kinetic molecular theory. Kinetic molecular theory is a theory which is based on the assumption that gases are made up of large number of particles which behave like spherical objects in a state of constant, random motion in space. These particles move in a straight path until they collide with another particle or the wall of the container.
4 0
2 years ago
Read 2 more answers
Determine the number of moles and mass requested for each reaction in Exercise 4.42.
suter [353]

Answer:

(a) 0.22 mol Cl₂ and 15.4g Cl₂

(b) 2.89.10⁻³ mol O₂ and 0.092g O₂

(c) 8 mol NaNO₃ and 680g NaNO₃

(d) 1,666 mol CO₂ and 73,333 g CO₂

(e) 18.87 CuCO₃ and 2,330g CuCO₃

Explanation:

In most stoichiometry problems there are a few steps that we always need to follow.

  1. Step 1: Write the balanced equation
  2. Step 2: Establish the theoretical relationship between the kind of information we have and the one we are looking for. Those relationships can be found in the balanced equation.
  3. Step 3: Apply conversion factor/s to the data provided in the task based on the relationships we found in the previous step.

(a)

Step 1:

2 Na + Cl₂ ⇄ 2 NaCl

Step 2:

In the balanced equation there are 2 moles of Na, thus 2 x 23g = 46g of Na. <u>46g of Na react with 1 mol of Cl₂</u>. Since the molar mass of Cl₂ is 71g/mol, then <u>46g of Na react with 71g of Cl₂</u>.

Step 3:

10.0gNa.\frac{1molCl_{2} }{46gNa} =0.22molCl_{2}

10.0gNa.\frac{71gCl_{2}}{46gNa} =15.4gCl_{2}

(b)

Step 1:

HgO ⇄ Hg + 0.5 O₂

Step 2:

<u>216.5g of HgO</u> form <u>0.5 moles of O₂</u>. <u>216.5g of HgO</u> form <u>16g of O₂</u>.

Step 3:

1.252gHgO.\frac{0.5molO_{2}}{216.5gHgO} =2.89.10^{-3} molO_{2}

1.252gHgO.\frac{16gO_{2}}{216.5gHgO} =0.092gO_{2}

(c)

Step 1:

NaNO₃ ⇄ NaNO₂ + 0.5 O₂

Step 2:

<u>16g of O₂</u> come from <u>1 mol of NaNO₃</u>. <u>16g of O₂</u> come from <u>85g of NaNO₃</u>.

Step 3:

128gO_{2}.\frac{1molNaNO_{3}}{16gO_{2}} =8mol NaNO_{3}

128gO_{2}.\frac{85gNaNO_{3}}{16gO_{2}} =680gNaNO_{3}

(d)

Step 1:

C + O₂ ⇄ CO₂

Step 2:

<u>12 g of C</u> form <u>1 mol of CO₂</u>. <u>12 g of C</u> form <u>44g of CO₂</u>.

Step 3:

20.0kgC.\frac{1,000gC}{1kgC} .\frac{1molCO_{2}}{12gC} =1,666molCO_{2

[tex]20.0kgC.\frac{1,000gC}{1kgC} .\frac{44gCO_{2}}{12gC} =73,333gCO_{2[/tex]

(e)

Step 1:

CuCO₃ ⇄ CuO + CO₂

Step 2:

<u>79.5g of CuO</u> come from <u>1 mol of CuCO₃</u>. <u>79.5g of CuO</u> come from <u>123.5g of CuCO₃</u>.

Step 3:

1.500kgCuO.\frac{1,000gCuO}{1kgCuO} .\frac{1mol CuCO_{3}}{79.5gCuO} =18.87molCuCO_{3}\\ 1.500kgCuO.\frac{1,000gCuO}{1kgCuO} .\frac{123.5g CuCO_{3}}{79.5gCuO} =2,330gCuCO_{3}

5 0
2 years ago
Suppose a group of volunteers is planning to build a park near a local lake. The lake is known to contain low levels of arsenic
Kisachek [45]

Answer:

A) 10.75 is the concentration of arsenic in the sample in parts per billion .

B) 7,633.66 kg the total mass of arsenic in the lake that the company have to remove.

C) It will take 1.37 years to remove all of the arsenic from the lake.

Explanation:

A) Mass of arsenic in lake water sample = 164.5 ng

The ppb is the amount of solute (in micrograms) present in kilogram of a solvent. It is also known as parts-per million.

To calculate the ppm of oxygen in sea water, we use the equation:

\text{ppb}=\frac{\text{Mass of solute}}{\text{Mass of solution}}\times 10^9

Both the masses are in grams.

We are given:

Mass of arsenic = 164.5 ng = 164.5\times 10^{-9} g

1 ng=10^{-9} g

Volume of the sample = V = 15.3 cm^3

Density of the lake water sample ,d= 1.00 g/cm^3

Mass of sample =  M = d\times V=1.0 g/cm^3\times 15.3 cm^3=15.3 g

ppb=\frac{164.5\times 10^{-9} g}{15.3 g}\times 10^9=10.75

10.75 is the concentration of arsenic in the sample in parts per billion.

B)

Mass of arsenic in 1 cm^3  of lake water = \frac{164.5\times 10^{-9} g}{15.3}=1.075\times 10^{-8} g

Mass of arsenic in 0.710 km^3 lake water be m.

1 km^3=10^{15} cm^3

Mass of arsenic in 0.710\times 10^{15} cm^3 lake water :

m=0.710\times 10^{15}\times 1.075\times 10^{-8} g=7,633,660.130 g

1 g = 0.001 kg

7,633,660.130 g = 7,633,660.130 × 0.001 kg=7,633.660130 kg ≈ 7,633.66 kg

7,633.66 kg the total mass of arsenic in the lake that the company have to remove.

C)

Company claims that it takes 2.74 days to remove 41.90 kilogram of arsenic from lake water.

Days required to remove 1 kilogram of arsenic from the lake water :

\frac{2.74}{41.90} days

Then days required to remove 7,633.66 kg of arsenic from the lake water :

=7,633.66\times \frac{2.74}{41.90} days=499.19 days

1 year = 365 days

499.19 days = \frac{499.19}{365} years = 1.367 years\approx 1.37 years

It will take 1.37 years to remove all of the arsenic from the lake.

3 0
1 year ago
Arrange the following solids in order of decreasing solubility, CaF2, K sp=4.0 × 10-11; Ag2CO3, K sp=8.1 × 10-12; Ba3(PO4)2, K s
viva [34]

Answer:

CaF2 > Ag2CO3 > Ag3(PO4)2 > Ba3(PO4)2

Explanation:

Ksp which is solubility product konstant shows equilibrium between a solids and its respective ions in a solution. And the lower it is the less soluble the ion compound will be. And for CaF2 we have the highest konstant and for Ba3(PO4)2 we have it the lowest.

5 0
2 years ago
What two-step process separated the cans into aluminum, steel, and tin?
Vikentia [17]

Answer:

Magnet

Durability and heaviness.(texture)

Explanation:

Magnet can be use to separate Aluminum from mixture of steel and aluminum.

Though aluminum and steel look alike but magnet can be use to separate it.

If the can attract the magnet or magnet stick to the can, it is a steel can. Aluminum does not stick to magnet.

A mixture of Aluminum and tin can also be separated by magnet.

Tin attract magnet but tin is more durable, heavy and does not corrode easily.

When u touch the three cans, tin is heavy and durable.

4 0
2 years ago
Other questions:
  • A sample contains 2.2 g of the radioisotope niobium-91 and 15.4 g of its daughter isotope, zirconium-91. how many half-lives hav
    12·2 answers
  • The Lewis structure for a chlorate ion, ClO3-, should show ____ single bond(s), ____ double bond(s), and ____ lone pair(s).
    15·2 answers
  • Using the equation, C5H12 + 8O2 Imported Asset 5CO2 + 6H2O, if an excess of pentane (C5H12) were supplied, but only 4 moles of o
    9·2 answers
  • The complex ion, [ni(nh3)6] 2+, has a maximum absorption near 580 nm. calculate the crystal field splitting energy (in kj/mol) f
    5·1 answer
  • Calculate the ph of a 0.20 m solution of iodic acid (hio3, ka = 0.17).
    6·1 answer
  • At 700 K, Kp for the following equilibrium is (5.6 x 10-3) 2HgO(s)--&gt; 2Hg(l) + O2(g) Suppose 51.2 g of mercury(II) oxide is p
    9·1 answer
  • Starting with: Lithium atomic mass: 7 g/mol atomic number: 3 Use Lithium as a starting place for A, B, and C. What would happen
    9·1 answer
  • Acetaldehyde shows two UV bands, one with a lmax of 289 nm ( 5 12) and one with a lmax of 182 nm ( 5 10,000). Which is the n p*
    5·1 answer
  • Draw a mechanism for the reaction of methylamine with 2-methylpropanoic acid. Draw any necessary curved arrows. Show the product
    9·1 answer
  • Which statement best describes the direction of heat flow by conduction between two samples of the same material?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!