I will solve this question assuming the reaction equation look like this:
<span>MnO2 + 4 HCl ---> MnCl2 + Cl2 + 2 H2O.
</span>
For every one molecule of MnO2 used, there will be one molecule of Cl2 formed. If the molecular mass of MnO2 is 87g/mol and molecular mass of Cl2 is <span> 73.0 g/mol, the mass of MnO2 needed would be:
Cl mass/Cl molecular mass * MnO2 molecular mass=
25g/ (73g/mol) * (87g/mol) * 1/1= 29.8 grams</span>
Answer:
Reactions 1, 3 and 5
Explanation:
First thing's first, let's ensure that all the reactions given are balanced. This is given as;
CO(g) + 1/2 O2(g )→ CO2(g)
Li(s) + 1/2 F2(l) → LiF(s)
C(s) + O2(g) → CO2(g)
CaCO3(g) → CaO + CO2(g)
2Li(s) + F2(g) → 2LiF(s)
For the condition to be valid;
- There is by convention 1 mol of product made. This means we eliminate reactions with more than one mole of compound formed. This eliminates reaction 5.
- The lements haveto be in their state at room temperature. Fluorine is a gas, not a liquid, at room temperature ans pressure, so 2 is not a correct answer.
This leaves us with reactions 1, 3 and 5 as the correct reactions that satisify the condition.
Explanation:
The given data is as follows.
Energy of radiation absorbed by the electron in hydrogen atom = 
As energy is absorbed as a photon. Hence, frequency will be calculated will be as follows.
E = 
=
= 
or,
=
It is known that, 
= 
And, according to De-Broglie equation 
as, p = 
So, 
= 
Now, on squaring both the sides we get the following.
=
=

where, m = mass of electron
So, 
= 
=
J
Since, K.E = 
= 
= 
Thus, we can conclude that kinetic energy acquired by the electron in hydrogen atom is
.
Answer:
See explanation
Explanation:
Now , we have the equation of the reaction as;
2H2S(g) + 302(g)------->2SO2(g) + 2H2O(g)
This equation shows that SO2 gas is produced in the process. Let us recall that this same SO2 gas is the anhydride of H2SO4. This means that it can dissolve in water to form H2SO4
So, when SO2 dissolve in rain droplets, then H2SO4 is formed thereby lowering the pH of rain water. This is acid rain.