When heat energy is supplied to a material it can raise the temperature of mass of the material.
Specific heat is the amount of energy required by 1 g of material to raise the temperature by 1 °C.
equation is
H = mcΔt
H - heat energy
m - mass of material
c - specific heat of the material
Δt - change in temperature
substituting the values in the equation
120 J = 10 g x c x 5 °C
c = 2.4 Jg⁻¹°C⁻¹
First step is to balance the reaction equation. Hence we get
P4 + 5 O2 => 2 P2O5
Second, we calculate the amounts we start with
P4: 112 g = 112 g/ 124 g/mol – 0.903 mol
O2: 112 g = 112 g / 32 g/mol = 3.5 mol
Lastly, we calculate the amount of P2O5 produced.
2.5 mol of O2 will react with 0.7 mol of P2O5 to produce 1.4
mol of P2O5.
This is 1.4 * (31*2 + 16*5) = 198.8 g
Answer:p-hydroxybenzaldehyde is stronger acid to phenol
para-cyanophenol is stronger acid to meta-cyanophenol
o-fluorophenol is stronger acid to p-fluorophenol.
Explanation:
The PKa tool relative to Ph are used to contrast the pairs.
The pKa of phenol is 10. The pKa of p-hydroxybenzaldehyde is 9.24
The pKa for meta-cyanophenol is 8.61 and the pKa for para-cyanophenol is 7.95.
The pKa value of o-fluorophenol is 8.7, while that of the p-fluorophenol is 9.9. It's obvious that the inductive effect is more dominant at ortho-position, which results in a more acidic nature
The pKa is the pH value at which a chemical species will accept or donate a proton. The lower the pKa, the stronger the acid and the greater the ability to donate a proton in aqueous solution.
Iron doesn't fit because it doesn't have enough atoms or protons in its nucleus so there for it belongs in column 2. <span />