I believe the answer would be C
The the compound of interest i.e. XCl4, since there are 4 Cl atoms bonded to X. This signifies that the valency of X is 4.
There atomic number of C is 6. It's electronic configuration is giving by 1s2 2s2 2p2. Thus, there are 4 electrons in valence shell of C. This signifies that valency of C is 4. Hence the compound present in present case is CCl4.
Hope this helps :)
Answer:
The limiting reactant is KOH.
Explanation:
To find the limiting reactant we need to calculate the number of moles of each one:
<u>Where</u>:
η: is the number of moles
m: is the mass
M: is the molar mass
Now, we can find the limiting reactant using the stoichiometric relation between the reactants in the reaction:

We have that between MnO₂ and KOH, the limiting reactant is KOH.

Similarly, we have that between O₂ and Cl₂, the limiting reactant is Cl₂.
Now, the limiting reactant between KOH and Cl₂ is:

Therefore, the limiting reactant is KOH.
I hope it helps you!
<span><u>PA to PB 100 pm to the left of the nucleus, along the -x axis.</u>
<u>100 pm below the nucleus along the -z axis.</u>
PAPB 100 pm in front of the nucleus, along the -y axis. 100 pm behind the nucleus, along the +y axis.
PAPB 100 pm to the right of the nucleus, along the +x axis. 100 pm above the nucleus, along the +z axis. </span>
A volumetric flask is used to contain a predetermined volume of substance and only measures that volume, for example 250 ml.
Conical flasks can be used to measure the volume of substances but the accuracy they provide is usually up to 10ml. Conical flasks are used in titrations, reactions where the liquid may boil, and reactions which involve stirring.
Pippettes are of two types, volumetric and graduated. Pippettes are used where high accuracy is required and volumetric pippettes come in as little as 1 ml. Pippettes are usually used in titrations.
Graduated cylinders come in a wide variety of sizes and their accuracy can be down to as much as 1 ml. They are used to contain liquids.
In order to compute the y-component of a vector, we simply use the formula:
Fy = F*sin(∅)
Where ∅ is the angle of the vector measured from the positive x-axis and F is the magnitude of the vector.
Similarly, the x-component is calculated by substituting sin(∅) with cos(∅)