Given the mass of hydrogen = 16.0 oz
Converting 16.0 oz hydrogen to pounds (lb) using the conversion factor 1 lb = 16 oz:

Converting 16.0 lb to g using the conversion factors 1 kg = 2.2 lb, 1 kg = 1000 g:

Heat of combustion of hydrogen = 142 J/g
Calculating the heat released when 16.0 oz is combusted:

We are going to use this equation:
ΔT = - i m Kf
when m is the molality of a solution
i = 2
and ΔT is the change in melting point = T2- 0 °C
and Kf is cryoscopic constant = 1.86C/m
now we need to calculate the molality so we have to get the moles of NaCl first:
moles of NaCl = mass / molar mass
= 3.5 g / 58.44
= 0.0599 moles
when the density of water = 1 g / mL and the volume =230 L
∴ the mass of water = 1 g * 230 mL = 230 g = 0.23Kg
now we can get the molality = moles NaCl / Kg water
=0.0599moles/0.23Kg
= 0.26 m
∴T2-0 = - 2 * 0.26 *1.86
∴T2 = -0.967 °C
Explanation:
The given reaction equation will be as follows.

Now, number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
Therefore, this equation is balanced since atoms on both reactant and product sides are equal.
Thus, we can conclude that there is one sulfur atom in the products.
Predict what will be observed in each experiment below. Rock candy is formed when excess sugar is dissolved in hot water followed by crystallization. A student wants to make two batches of rock candy. He finds an unopened box of "cane sugar" in the pantry. He starts preparing batch A by dissolving sugar in 500 mL of hot water (70 degree C). He keeps adding sugar until no more sugar dissolves in the hot water. He cools the solution to room temperature. He prepares batch B by dissolving sugar in 500 mL of water at room temperature until no more sugar is dissolved. He lets the solution sit at room temperature
a. It is likely that more rock candy will be formed in batch A.
b. It is likely that less rock candy will be formed in batch A.
c. It is likely that no rock candy will be formed in either batch.
d. I need more information to predict which batch is more likely to form rock candy.
Answer: Option A
Explanation:
More rock candy will be formed in the batch A because it is dissolved in hot water and less rock candy will be formed in batch B because the water is not hot.
Formation of the candies require hot water as the solubility of sugar is more in hot water as compared to normal water.
The sugar will be dissolved in water until the time all the space is filled sugar molecules.
Hence, the correct answer is Option A.
Answer:- 0.138 M
Solution:- The buffer pH is calculated using Handerson equation:

acts as a weak acid and
as a base which is pretty conjugate base of the weak acid we have.
The acid hase two protons(hydrogen) where as the base has only one proton. So, we could write the equation as:

Phosphoric acid gives protons in three steps. So, the above equation is the second step as the acid has only two protons and the base has one proton.
So, we will use the second pKa value. The acid concentration is given as 0.10 M and we are asked to calculate the concentration of the base to make a buffer of exactly pH 7.00.
Let's plug in the values in the equation:



Taking antilog:


On cross multiply:
[base] = 1.38(0.10)
[base] = 0.138
So, the concentration of the base that is
required to make the buffer is 0.138M.