<u>Answer:</u> Zinc will react with lead (II) nitrate solution.
<u>Explanation:</u>
Single displacement reaction is defined as the reaction in which more reactive element displaces a less reactive element from its chemical reaction.
The reactivity of metal is determined by a series known as reactivity series. The metals lying above in the series are more reactive than the metals which lie below in the series.
General equation for single displacement reaction follows:

When zinc is reacted with calcium nitrate, the reaction does not take place as zinc is less reactive than calcium. Zinc lies below in the series than calcium.

But, when zinc is reacted with lead (II) nitrate, the reaction do take place as zinc is more reactive than lead. Zinc lies above in the series than lead.
The chemical equation for the reaction of zinc and lead (II) nitrate follows:

Hence, zinc will react with lead (II) nitrate solution.
Answer:
Atomic number = 10
Mass number = 20
Explanation:
Mass number = neutrons+protons
Mass number = 10+10 = 20
The pair which consist of molecules having the same geometry is CH2CCI2 and CH2CH2.
Both of these molecules contain double bonds, which has sp^2 hybridization and they possess a trigonal planar geometry. In trigonal planar geometry, the molecule consist of three equally spaced sp^2 hybrid orbitals, which arranged at angle 120 degree.
The question is incomplete, the complete question is;
Which of the following is most likely a heavier stable nucleus? (select all that apply) Select all that apply: A nucleus with a neutron:proton ratio of 1.05 A nucleus with a A nucleus with a neutron:proton ratio of 1.49 The nucleus of Sb-123 A nucleus with a mass of 187 and an atomic number of 75
Answer:
A nucleus with a A nucleus with a neutron:proton ratio of 1.49
A nucleus with a mass of 187 and an atomic number of 75
Explanation:
The stability of a nucleus depends on the number of neutrons and protons present in the nucleus. For many low atomic number elements, the number of protons and number of neutrons are equal. This implies that the neutron/proton ratio = 1
Elements with higher atomic number tend to be more stable if they have a slight excess of neutrons as this reduces the repulsion between protons.
Generally, the belt of stability for chemical elements lie between and N/P ratio of 1 to an N/P ratio of 1.5.
Two options selected have an N/P ratio of 1.49 hence they are heavy stable elements.
The chemical reaction would be written as
2 AsF3<span> + 3 CCl4 = 2 AsCl3 + 3 CCl2F2
</span>
We use the given amounts of the reactants to first find the limiting reactant. Then use the amount of the limiting reactant to proceed to further calculations.
150 g AsF3 ( 1 mol / 131.92 g) = 1.14 mol AsF3
180 g CCl4 (1 mol / 153.82 g) = 1.17 mol CCl4
Therefore, the limiting reactant would be CCl4 since it would be consumed completely. The theoretical yield would be:
1.17 mol CCl4 ( 3 mol CCl2F2 / 3 mol CCl4 ) = 1.17 mol CCl2F2