There is an exact value for the standard volume at standard conditions of 1 atm and 273 K. This standard volume for any ideal gas is 22.4 L/mol. Thus,
Moles SO₂ = 5.9 L * 1 mol/22.4 L = 0.263 mol
The molar mass for SO₂ is 64.066 g/mol. So, the mass is:
Mass = 0.263 mol * 64.066 g/mol = <em>16.87 g SO₂</em>
<span>The extracellular fluid is high in NaCl so the cell would be dehydrated further and the two solutions would equilibrate. Ultimately water would leave the cell and passes to </span>extracellular fluid and equilibrium is reached.
<h3>
Answer:</h3>
a) LiClO4 - Strong electrolyte
b) HClO -Weak electrolyte
c) CH3CH2CH2OH - Non-electrolyte
d) HClO3 - Strong electrolyte
e) CuSO4 -strong electrolyte
f) C12H22O11-Non-electrolyte
<h3>
Explanation:</h3>
- An electrolyte is a substance in an aqueous or molten form which is decomposed by passing an electric current through it. Electrolytes ionize to ions which are responsible for the conduction of electric charge.
- Non-electrolytes are substances that do not ionize into cations and anions and thus do not conduct. They include molecular compounds such as gases.
- Electrolytes may be weak or strong depending on the level of ionization.
- Weak electrolytes are those that undergo partial ionization while strong electrolytes completely ionize.
Answer:
ΔH of solution is expected to be close to zero.
Explanation:
When we mix two non polar organic liquids like hexane and heptane,the resulting mixture formed is an ideal solution.An ideal solution is formed when the force of attraction between the molecules of the two liquids is equal to the force of attraction between the molecules of the same type.
For instance if liquids A and B are mixed,
=
= 
Hence the condition before and after mixing remains unchanged.
Since enthalpy change is associated with inter molecular force of attraction the enthalpy change for ideal solution is zero.
More examples of ideal solutions are:
1. Ethanol and Methanol
2. Benzene and Toluene
3. Ethyl bromide and Ethyl iodide
Q1)
the number of moles can be calculated as follows
number of moles = mass present / molar mass
number of moles is the amount of substance.
4.8 g of Ca was added therefore mass present of Ca is 4.8 g
molar mass of Ca is 40 g/mol
molar mass is the mass of 1 mol of Ca
therefore if we substitute these values in the equation
number of moles of Ca = 4.8 g / 40 g/mol = 0.12 mol
0.12 mol of Ca is present
q2)
next we are asked to calculate the number of moles of water present
again we can use the same equation to find the number of moles of water
number of moles = mass present / molar mass
3.6 g of water is present
sum of the products of the molar masses of the individual elements by the number of atoms
H - 1 g/mol and O - 16 g/mol
molar mass of water = (1 g/mol x 2 ) + 16 g/mol = 18 g/mol
molar mass of H₂O is 18 g/mol
therefore number of moles of water = 3.6 g / 18 g/mol = 0.2 mol
0.2 mol of water is present