answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
2 years ago
6

A solution is prepared by dissolving 10.0 g of NaBr and 10.0 g of Na2SO4 in water to make a 100.0 mL solution. This solution is

then mixed with 75.0 mL of a 0.800 M aqueous solution of AlBr3. Calculate the concentration (M) of Na+ and Br− in the final solution.
Chemistry
1 answer:
Colt1911 [192]2 years ago
7 0

Answer:

M_{Na^+}=1.36M

M_{Br^-}=1.58M

Explanation:

Hello,

At first, it turns out convenient to compute the total moles of sodium that will be dissolved into the solution by considering the added amounts of sodium bromide and sodium sulfate:

n_{Na^+}=n_{Na^+,NaBr}+n_{Na^+,Na_2SO_4}\\n_{Na^+,NaBr}=10.0gNaBr*\frac{1molNaBr}{103gNaBr}*\frac{1molNa^+}{1molNaBr}=0.0971molNa^+\\n_{Na^+,Na_2SO_4}=10.0gNa_2SO_4*\frac{1molNa_2SO_4}{142gNa_2SO_4}*\frac{2molNa^+}{1molNa_2SO_4} =0.141molNa^+\\n_{Na^+}=0.0971molNa^++0.141molNa^+\\n_{Na^+}=0.238molNa^+

Once we've got the moles we compute the final volume via:

V=100.0mL+75.0mL=175.0mL*\frac{1L}{1000mL}=0.1750L

Thus, the molarity of the sodium atoms turn out into:

M_{Na^+}=\frac{0.238mol}{0.1750L} =1.36M

Now, we perform the same procedure but now for the bromide ions:

n_{Br^-}=n_{Br^-,NaBr}+n_{Br^-,AlBr_3}\\n_{Br^-,NaBr}=10.0gNaBr*\frac{1molNaBr}{103gNaBr}*\frac{1molBr^-}{1molNaBr}=0.0971molBr^-\\n_{Br^-,AlBr_3}=0.0750L*0.800\frac{molAlBr_3}{L} *\frac{3molBr^-}{1molAlBr_3}=0.180molBr^- \\n_{Br^-}=0.0971molBr^-+0.180molBr^-\\n_{Br^-}=0.277molBr^-

Finally, its molarity results:

M_{Br^-}=\frac{0.277molBr^-}{0.1750L}=1.58M

Best regards.

You might be interested in
Which of the following atoms would have the longest de Broglie wavelength, if all have the same velocity?
GenaCL600 [577]

Answer:

Li

Explanation:

The phenomenon of wave particle duality was well established by Louis deBroglie. The wavelength associated with matter waves was related to its mass and velocity as shown below;

λ= h/mv

Where;

λ= wavelength of matter waves

m= mass of the particle

v= velocity of the particle

This implies that if the velocities of all particles are the same, the wavelength of matter waves will now depend on the mass of the particle. Hence; the wavelength of a matter wave associated with a particle is inversely proportional to the magnitude of the particle's linear momentum. The longest wavelength will then be obtained from the smallest mass of matter. Hence lithium which has the smallest mass will exhibit the longest DeBroglie wavelength

4 0
2 years ago
Which of the following is the best definition of pseudoscience?
expeople1 [14]
The definition of pseudoscience is collection of beliefs or practices mistakenly regarded as being based on scientific method. which B is very similar to that. I believe the answer is A.

 Have a nice day. 
8 0
2 years ago
Read 2 more answers
What is the difference between calorie and Calorie?
Blababa [14]

What is the difference between calories and kilocalories? The "calorie" we refer to in food is actually kilocalorie. One (1) kilocalorie is the same as one (1) Calorie (upper case C). A kilocalorie is the amount of heat required to raise the temperature of 1 kilogram of water one degree Celsius.

5 0
2 years ago
Which statement accurately describes dark matter?
Mandarinka [93]

Answer:

C. It does not emit electromagnetic radiation.

Explanation:

Right now, Dark Matter is only a theory. Scientist proposed this to counter some of the strange phenomenon with matter in space.

Scientists know little about dark matter. Some say it's one of the driving forces of the universe. Currently, scientists have no way of measuring or identifying dark matter.

5 0
2 years ago
Read 2 more answers
Which of the following statements is true about the following reaction?
MAVERICK [17]

The correct reaction equation is:

3NaHCO_{3} (aq) + C_{6}H_{8}O_{7} (aq) \rightarrow 3CO_{2} (g) + 3H_{2}O (l) + Na_{3}C_{6}H_{5}O_{7} (aq)

Answer:

b) 1 mole of water is produced for every mole of carbon dioxide produced.

Explanation: <u>CONVERT EVERYTHING TO MOLES OR VOLUME, THEN COMPARE IT WITH THE COMPOUND'S STOICHIOMETRY IN CHEMICAL EQUATION.</u>

a) <u>22.4 L of CO_{2} gas</u> is produced only when <u>\frac{22.4}{3} L of  C_{6}H_{8}O_{7}</u> is reacted with 22.4 L of NaHCO_{3}. So it is wrong.

b) Since in the chemical equation the stoichiometric coefficient of CO_{2}  and H_{2}O are same so the number of moles or volume of each of them will be same whatever the amount of reactants taken. <u>Therefore it is correct option.</u>

c)  6.02\times 10^{23} molecules is equal 1 mole of Na_{3}C_{6}H_{5}O_{7} if produced then 3 moles of NaHCO_{3} is required, which is not given in the option. So it is wrong.

d) 54 g of water or 3 moles of H_{2}O (<em>Molecular Weight of water is 18 g</em>) is produced when 3 moles of NaHCO_{3} is used but in this option only one mole of NaHCO_{3} is given. So it is wrong.

8 0
2 years ago
Read 2 more answers
Other questions:
  • What is the oxidation number for iodine in Mg(IO3)2 ?
    13·2 answers
  • Which statement is true? Nuclear power plants require more fuel than conventional power plants. There is a short supply of high
    13·2 answers
  • A gram of gasoline produces 45.0kj of energy when burned. gasoline has a density of 0.77/gml . how would you calculate the amoun
    6·1 answer
  • 50 POINTSSSSS PLZ HELPPPPPP NEED TO SHOW WORK!!!!
    5·1 answer
  • Precipitation will increase in areas where there is A) less transpiration and less run-off. B) lower temperatures and more evapo
    11·2 answers
  • In all atoms of bismuth, the number of electrons must equal the:
    13·2 answers
  • Complete the following sentence: The cathode in a voltaic cell is the electrode _____________.
    5·1 answer
  • What is the lewis structure for C2H3OH?
    10·1 answer
  • What is the concentration in %m/v of a 0.617 M aqueous solution of methanol (MM = 32.04 g/mol)?
    11·1 answer
  • In run 1, you mix 7.9 mL of the 43 g/L MO solution (MO molar mass is 327.33 g/mol), 3.13 mL of the 0.040 M SnCl2 in 2.0 M HCl so
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!