Answer:
for this reaction at this temperature is 0.029
Explanation:
Moles of
= 2.00 mole
Volume of solution = 4.00 L
Initial concentration of
The given balanced equilibrium reaction is,

Initial conc. 0.500 M 0 M 0 M
At eqm. conc. (0.500-2x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[H_2\times [Br_2]}{[HBr]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5Ctimes%20%5BBr_2%5D%7D%7B%5BHBr%5D%5E2%7D)
Equilibrium concentration of
= x = 0.0955 M
Now put all the given values in this expression, we get :


Thus
for this reaction at this temperature is 0.029
Answer:
Partial pressure of nitrogen gas is 0.98 bar.
Explanation:
According to the Dalton's law, the total pressure of the gas is equal to the sum of the partial pressure of the mixture of gases.




where,
= total pressure = 3.9 bar
= partial pressure of nitrogen gas
= partial pressure of oxygen gas
= partial pressure of argon gases
= Mole fraction of nitrogen gas = 0.25
= Mole fraction of oxygen gas = 0.65
= Mole fraction of argon gases = 0.10
Partial pressure of nitrogen gas :

Partial pressure of oxygen gas :

Partial pressure of argon gas :

Answer:
A polar molecule is a molecule in which one end of the molecule is slightly positive, while the other end is slightly negative. A diatomic molecule that consists of a polar covalent bond, such as HF, is a polar molecule. The two electrically charged regions on either end of the molecule are called poles, similar to a magnet having a north and a south pole. A molecule with two poles is called a dipole. Hydrogen fluoride is a dipole. A simplified way to depict polar molecules is pictured below When placed between oppositely charged plates, polar molecules orient themselves so that their positive ends are closer to the negative plate and their negative ends are closer to the positive plate
Experimental techniques involving electric fields can be used to determine if a certain substance is composed of polar molecules and to measure the degree of polarity.
For molecules with more than two atoms, the molecular geometry must also be taken into account when determining if the molecule is polar or nonpolar. is a comparison between carbon dioxide and water. Carbon dioxide (CO2) is a linear molecule. The oxygen atoms are more electronegative than the carbon atom, so there are two individual dipoles pointing outward from the C atom to each O atom. However, since the dipoles are of equal strength and are oriented in this way, they cancel each other out, and the overall molecular polarity of CO2 is zero.
Water is a bent molecule because of the two lone pairs on the central oxygen atom. The individual dipoles point from the H atoms toward the O atom. Because of the shape, the dipoles do not cancel each other out, and the water molecule is polar. In the figure, the net dipole is shown in blue and points upward.
Some other molecules are shown below (Figure below). Notice that a tetrahedral molecule such as CH4 is nonpolar. However, if one of the peripheral H atoms is replaced by another atom that has a different electronegativity, the molecule becomes polar. A trigonal planar molecule (BF3) may be nonpolar if all three peripheral atoms are the same, but a trigonal pyramidal molecule (NH3) is polar.
Letter d, because they are both alkali metals (group one)
Answer: 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution
Explanation:
Molality : It is defined as the number of moles of solute present per kg of solvent
Formula used :

where,
n= moles of solute
Moles of
= weight of the solvent in g = ?


Thus 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution