Answer : The correct option is, 30 protons
Explanation :
Element = Zinc
Atomic number = 30
Atomic mass number = 65
As we know that the atomic number is equal to the number of electrons and number of protons.
Atomic number = Number of electrons = Number of protons = 30
Number of neutrons = Atomic mass - Number of protons = 65 - 30 = 35
Therefore, the number of protons an uncharged zinc atom have 30 protons.
Answer:
sublime, melt, condense, deposit
Explanation:
1. When ice is warmed at a steady pressure 0.00512 atm, it will be sublime.
2. It will be melt when ice is warmed at a consistent pressure of 1 atm.
3. If water vapour pressure is continued to increase at a temperature of 100 C, it will be condense.
4. If water vapour pressure is continued to increase at a temperature of -50 C, it will be deposited.
Answer: The molecular formula will be 
Explanation:
If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
Mass of C= 70.6 g
Mass of H = 5.9 g
Mass of O = 23.5 g
Step 1 : convert given masses into moles.
Moles of C =
Moles of H =
Moles of O =
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C = 
For H = 
For O =
The ratio of C : H: O= 4: 4:1
Hence the empirical formula is 
The empirical weight of
= 4(12)+4(1)+1(16)= 68g.
The molecular weight = 136 g/mole
Now we have to calculate the molecular formula.

The molecular formula will be=
The temperature reached after four hours of cooling is 140 F (or) 42 C.
Explanation:
A food worker cooled a cup of soup for two hours,
step 1: The temperature reached in <u>two hours</u>= 70 F (or) 21 C
step 2: Then for <u>four hours</u>, <u>it is twice the value</u>
∴ The temperature reached in four hours= 2(70)= 140 F (or) 2(21)= 42 C
To determine the pOH assuming water is the universal solvent take the value of 10 ^ -14 and then divide it by the hydronium concentration and then take the negative logarithm of the final answer that is the solution to the hydroxide ion concentration in the solution.