The final temperature of the copper is 59.0. The specific heat capacity of copper is 0.38 j/g -k
<em>Answer:</em>
The order of liquid from top to bottom is as follow
<em>Explanation:</em>
Chart of densities:
- Red = 1.2 g/cm∧3
- Blue = 1.6 g/cm∧3
- green = 0.8 g/cm∧3
- Purple = 0.1 g/cm∧3
<em>Density: </em>
Density is the ratio of mass and volume as follow
d = m/v
<em>Summary:</em>
- Greater the density, it will be at bottom and vice versa.
- Blue liquid has greater density so it will be at bottom
- Purple liquid has low density, so it will be at top.
Answer:
The partial pressure of argon in the jar is 0.944 kilopascal.
Explanation:
Step 1: Data given
Volume of the jar of air = 25.0 L
Number of moles argon = 0.0104 moles
Temperature = 273 K
Step 2: Calculate the pressure of argon with the ideal gas law
p*V = nRT
p = (nRT)/V
⇒ with n = the number of moles of argon = 0.0104 moles
⇒ with R = the gas constant = 0.0821 L*atm/mol*K
⇒ with T = the temperature = 273 K
⇒ with V = the volume of the jar = 25.0 L
p = (0.0104 * 0.0821 * 273)/25.0
p = 0.00932 atm
1 atm =101.3 kPa
0.00932 atm = 101.3 * 0.00932 = 0.944 kPa
The partial pressure of argon in the jar is 0.944 kilopascal.
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³
Answer:
4.86×10^23 molecule of Pb
Explanation:
Based on that equation, for every 2 moles of ammonia, you get 3 moles of lead.
So:
2 mol NH3/ 3 mol Pb
Using this ratio we can find the amounts of either molecule. Given 5.38 mol NH3:
(5.38 NH3)(3 Pb/ 2 NH3) = (5.38)(3/2) mol Pb = 8.07 mol Pb
Then, we just need to use Avagadro's number to get the number of molecules.
(8.07)(6.02×10^23) = 4.86×10^23 molecule of Pb