It’s b and could I have the Brianliest plzzzz
Answer:
C
Explanation:
It looks pretty reasonable to me
Answer:
Mass of solution=100g
mass of salt=20g
so; mass of solute=80g
percentage composition =(mass of salt/total
mass) ×100
= \frac{20}{100} \times 100 \\ = 20\%
glad to help you
hope it helps
Answer:
H+/H3O , H2O
Explanation:
The ability to be a proton donor is the Bronsted-Lowry definition of acids. The Lewis definition of an acid is an electron pair acceptor, which covers molecules liKE BF3
The ability to accept a pair of electrons is what is common to all acids, not the ability to be a proton donor.
All acid solutions contain hydronium ions (H3O+), hydroxide ions (OH-) and water molecules. Each different acid solution will then have an anion that is exclusive to that acid. For example, hydrochloric acid solution will contain all of the above and chloride ions (Cl-).
All acids contain the acidic substance dissolved in water. Water naturally dissociates to a small amount, creating hydronium and hydroxide ions. But most of the water remains as water molecules.
Then when we add an acid, like HCl, the oxygen on the water attracts the hydrogen from the HCl. The electrons in the covalent bond remain with the chlorine, giving it a negative charge and thus it becomes the chloride ion (Cl-). The hydrogen now has a positive charge and as said before, is attracted to the water (specifically the lone pair of electrons on the oxygen) to create hydronium ions.
This creates extra hydronium ions, making the solution acidic. But remember, there are still water molecules, hydroxide ions and the negative ion all in solution for all acids.
Answer: 19.4 mL Ba(OH)2
Explanation:
H2(g) + Cl2(g) --> 2HCl(aq) (make sure this equation is balanced first)
At STP, 1 mol gas = 22.4 L gas. Use this conversion factor to convert the 100. mL of Cl2 to moles.
0.100 L Cl2 • (1 mol / 22.4 L) = 0.00446 mol Cl2
Use the mole ratio of 2 mol HCl for every 1 mol Cl2 to find moles of HCl produced.
0.00446 mol Cl2 • (2 mol HCl / 1 mol Cl2) = 0.00892 mol HCl
HCl is a strong acid and Ba(OH)2 is a strong base so both will completely ionize to release H+ and OH- respectively. You need 0.00892 mol OH- to neutralize all of the HCl. Note that one mole of Ba(OH)2 contains 2 moles of OH-.
0.00892 mol OH- • (1 mol Ba(OH)2 / 2 mol OH-) • (1 L Ba(OH)2 / 0.230 M Ba(OH)2) = 0.0194 L = 19.4 mL Ba(OH)2