Answer:
0.12 mol KCl
Explanation:
2 KClO3 (s) 2 KCl (s) + 3 O2 (g)
15 g x mol
x g KCl = 15 g KClO3 x[ (1 mol KClO3)/ (122.5 g KClO3) ] x [(2 mol KCl)/ (2 mol KClO3)]
x g KCl = 0.12 mol KCl
Hello there!
To determine the fraction of the hydrogen atom's mass that is in the nucleus, we have to keep in mind that
a Hydrogen atom has 1 proton and 1 electron.
Protons are in the nucleus while electrons are in electron shells surrounding the nucleus.
The mass of the nucleus will be equal to the mass of 1 proton and we can express the fraction as follows:

So, the fraction of the hydrogen atom's mass that is in the nucleus is
0,9995. That means that almost all the mass of this atom is at the nucleus.
Have a nice day!
Sodium-22 remain : 1.13 g
<h3>Further explanation
</h3>
The atomic nucleus can experience decay into 2 particles or more due to the instability of its atomic nucleus.
Usually, radioactive elements have an unstable atomic nucleus.
General formulas used in decay:

T = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
half-life = t 1/2=2.6 years
T=15.6 years
No=72.5 g

Answer:
Removal of Third Electron
Explanation:
a major jump is required to remove the third electron. In general, successive ionization energies always increase because each subsequent electron is being pulled away from an increasingly more positive ion.
Ionization energy increases from bottom to top within a group, and increases from left to right within a period.
I’m writing this equation by memory, so I hope I’m correct. It’s been about four months since we used in in my chem class:
(P-(n^2•a)/V^2)(V-nb)=nRT
Plugging in values given:
(P-(1•1.35)/(1.42^2))(1.42-(1•0.0322))=(1)(0.0821)(300)
(P-(1.35/2.016))(1.42-0.0322)=24.63
(P-(1.35/2.016))=17.75
P=18.42 atm
The pressure exerted by the Argon would be 18.42 atmospheres.