<h2>
Hello!</h2>
The answer is:
When the pressure that a gas exerts on a sealed container changes from
22.5 psi to 19.86 psi, the temperature changes from 110°C to
65.9°C.
<h2>
Why?</h2>
To calculate which is the last pressure, we need to use Gay-Lussac's law.
The Gay-Lussac's Law states that when the volume is kept constant, the temperature (absolute temperature) and the pressure are proportional.
The Gay-Lussac's equation states that:

We are given the following information:
We need to remember that since the temperatures are given in Celsius degrees, we need to convert it to Kelvin (absolute temperature) before use the equation, so:

Now, calculating we have:

Hence, the final pressure is equal to 19.86 Psi.
Have a nice day!
Volume of each solution : 60 ml 20% and 40 ml 45%
<h3>Further explanation</h3>
Given
20% and 45% acid
100 ml of 30% acid
Required
Volume of each solution
Solution
Molarity from 2 solutions :
Vm Mm = V₁. M₁ + V₂. M₂
m = mixed solution
V = volume
M = molarity
V₁ = x ml
V₂ = (100 - x) ml
Input the value :
100 . 0.3 = x . 0.2 + (100-x) . 0.45
30 = 0.2x+45-0.45x
0.25x=15
x= 60 ml
V₁ = 60 ml
V₂ = 100 - 60 = 40 ml
Answer:
Hydrogen peroxide should be stored in
1) a cool environment
2) with amber bottles away from sunlight
3) with little drops of sodium phosphate
Explanation:
It has been confirmed that heat and light aids in the decomposition of hydrogen peroxide according to the equation; 2H2O2→2 H2O + O2.
This means that hydrogen peroxide must be stored in a cool place. This will reduce its rate of decomposition. Secondly, it should be stored in amber bottles away from light since light also aids in its decomposition.
Thirdly, drops of sodium phosphate may be added to prevent its catalytic decomposition during storage.
NH₃, being a basic gas neutralizes the HNO₃ forming a salt NH₄NO₃
Therefore the correct answer is NH₃ and NH₄NO₃
The solution of which only 32% dissociates to release OH⁻ ions is a weak base. This is because some of the energy is used when the substance reacts with the solution thus some bonds are not broken.
HCl is an acid. This is because it dissociates in water to give H⁺ as the only positively charged ions.
Arrhenius acid increases the concentration of hydrogen ions because it dissociates to release hydrogen ions as the only positively charged ions in the acid. So the answer is TRUE
Arrhenius base dissociates in water to release hydroxide ions as the only negatively charged ions.
NaOH⁺aq⇒Na⁺ ₍aq₎+ OH⁻₍aq₎