5-10 seconds xxx :) hope this helps
NH₃, being a basic gas neutralizes the HNO₃ forming a salt NH₄NO₃
Therefore the correct answer is NH₃ and NH₄NO₃
The solution of which only 32% dissociates to release OH⁻ ions is a weak base. This is because some of the energy is used when the substance reacts with the solution thus some bonds are not broken.
HCl is an acid. This is because it dissociates in water to give H⁺ as the only positively charged ions.
Arrhenius acid increases the concentration of hydrogen ions because it dissociates to release hydrogen ions as the only positively charged ions in the acid. So the answer is TRUE
Arrhenius base dissociates in water to release hydroxide ions as the only negatively charged ions.
NaOH⁺aq⇒Na⁺ ₍aq₎+ OH⁻₍aq₎
Explanation:
The given data is as follows.
Moles of propylene = 100 moles,
= 300 K
= 800 K,
,
of propylene = 100 J/mol
Now, we assume the following assumptions:
Since, it is a compression process therefore, work will be done on the system. And, work done will be equal to the heat energy liberating without any friction.
W = 

= 
= 5 MJ
Thus, we can conclude that a minimum of 5 MJ work is required without any friction.
Hi, you have not provided structure of the aldehyde and alkoxide ion.
Therefore i'll show a mechanism corresponding to the proton transfer by considering a simple example.
Explanation: For an example, let's consider that proton transfer is taking place between a simple aldehyde e.g. acetaldehyde and a simple alkoxide base e.g. methoxide.
The hydrogen atom attached to the carbon atom adjacent to aldehyde group are most acidic. Hence they are removed by alkoxide preferably.
After removal of proton from aldehyde, a carbanion is generated. As it is a conjugated carbanion therefore the negative charge on carbon atom can conjugate through the carbonyl group to form an enolate which is another canonical form of the carbanion.
All the structures are shown below.