Answer : The specific heat (J/g-K) of this substance is, 0.780 J/g.K
Explanation :
Molar heat capacity : It is defined as the amount of heat absorbed by one mole of a substance to raise its temperature by one degree Celsius.
1 mole of substance releases heat = 92.1 J/K
As we are given, molar mass of unknown substance is, 118 g/mol that means, the mass of 1 mole of substance is, 118 g.
As, 118 g of substance releases heat = 92.1 J/K
So, 1 g of substance releases heat = 
Thus, the specific heat (J/g-K) of this substance is, 0.780 J/g.K
Answer:
Because the hot air from the equator is balance with the cold air from the polar region, meaning the temperature is the right degree, therefore it causes the slowing down of that hurricane.
Explanation:
From your science class you do study the convectional current right? that's what happen on the outside real life
Answer:
ΔH = -976.5 kJ
Explanation:
For the reaction given, there are 2 moles of benzene (C6H6). The heat of this reaction is -6278 kJ, which means that the combustion of 2 moles of benzene will lose 6278 kJ of heat. It is an exothermic reaction.
The value of ΔH, the enthalpy, is a way of measurement of the heat, and it depends on the quantity of the matter (number of moles).
So, 24.3 g of benzene has :
n = mass/ molar mass
n = 24.3/78.11
n = 0.311 moles
2 moles ------------ -6278 kJ
0.311 moles ----------- x
By a simple direct three rule:
2x = -1953.08
x = -976.5 kJ
A. The Average Ecological footprint will need to decrease . 6-11-18
<span>If a mole of aluminum weighs 26.98 grams, that means 1 atom of aluminum weighs = (26.98 g/mole) / (6.023 x 10^23 atoms/mole) = 4.479 x 10^-23 grams,
</span>so, it is not possible because 1 atom weighs that much we calculated which is <span>almost 100 times more than the amount you mentioned</span>