<u>Answer:</u> The new concentration of lemonade is 3.90 M
<u>Explanation:</u>
To calculate the number of moles for given molarity, we use the equation:
.....(1)
Molarity of lemonade solution = 2.66 M
Volume of solution = 473 mL
Putting values in equation 1, we get:

Now, calculating the new concentration of lemonade by using equation 1:
Moles of lemonade = 1.26 moles
Volume of solution = (473 - 150) mL = 323 mL
Putting values in equation 1, we get:

Hence, the new concentration of lemonade is 3.90 M
<u>Answer:</u> The element represented by M is Strontium.
<u>Explanation:</u>
Let us consider the molar mass of metal be 'x'.
The molar mass of MO will be = Molar mass of oxygen + Molar mass of metal = (16 + x)g/mol
It is given in the question that 15.44% of oxygen is present in metal oxide. So, the equation becomes:

The metal atom having molar mass as 87.62/mol is Strontium.
Hence, the element represented by M is Strontium.
Answer: 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution
Explanation:
Molality : It is defined as the number of moles of solute present per kg of solvent
Formula used :

where,
n= moles of solute
Moles of
= weight of the solvent in g = ?


Thus 770 g water are needed to dissolve 27.8 g of ammonium nitrate
in order to prepare a 0.452 m solution
Answer:
Explanation:
A covalent compound is made when two or more nonmetal atoms bond by sharing valence electrons. The shared valence electrons between two nonmetal atoms is called a covalent bond. Covalent bonds are formed when two atoms begin sharing electrons
The moles of oxygen that are produced when 26.5 mol of Al2O3 decomposes is 39.8 mol
<u>calculation</u>
<u> </u> 2Al2O3 + 4Al +3 O2
- use the mole ratio of Al2O3 to O2 to determine the moles of O2.
- that is from the equation above the mole ratio of Al2O3 : O2 is 2:3
- the moles of O2 is therefore=n 26.5 mol x3/2= 39.8 moles