Answer:
5.5moles
Explanation:
CaC2 + 2H2O —> Ca(OH)2 + C2H2
From the equation, the following were observed:
1mole of CaC2 reacted to produced 1mol of C2H2.
Therefore, 5.5moles of CaC2 will also produce 5.5moles of C2H2
Answer:
The answer to your question is Molarity = 0.6158, I got the same answer as you.
Explanation:
Data
Molarity = ?
Mass of KMnO₄ = 36.5 g
Total volume = 375 ml
Process
1.- Calculate the Molar mass of KMnO₄
KMnO₄ = (1 x 39.10) + (54.94 x 1) + (16 x 4)
= 39.10 + 54.94 + 64
= 158.04 g
2.- Calculate the moles of KMnO₄
158.04 g of KMnO₄ ------------------- 1 mol
36.5 g of KMnO₄ --------------------- x
x = (36.5 x 1) / 158.04
x = 0.231 mol
3.- Convert the volume to liters
1000 ml -------------------- 1 L
375 ml --------------------- x
x = (375 x 1)/1000
x = 0.375 L
4.- Calculate the Molarity
Molarity = moles / volume
-Substitution
Molarity = 0.231 moles / 0.375 L
Result
Molarity = 0.6158
The diatomic molecule that is formed when two atoms share six electrons is N2.
The atomic number of nitrogen is 7 and its electronic configuration is 2,5. This implies that, nitrogen has 5 electrons in its outermost shell. To attain the octet structure, it needs 3 electrons more. To form a diatomic molecule, two nitrogen atoms come together and each donate three electrons, which are equally shared between the two, thus, each ends up having 8 electrons in its outermost shell.
Answer:
-3.7771 × 10² kJ/mol
Explanation:
Let's consider the following equation.
3 Mg(s) + 2 Al³⁺(aq) ⇌ 3 Mg²⁺(aq) + 2 Al(s)
We can calculate the standard Gibbs free energy (ΔG°) using the following expression.
ΔG° = ∑np . ΔG°f(p) - ∑nr . ΔG°f(r)
where,
n: moles
ΔG°f(): standard Gibbs free energy of formation
p: products
r: reactants
ΔG° = 3 mol × ΔG°f(Mg²⁺(aq)) + 2 mol × ΔG°f(Al(s)) - 3 mol × ΔG°f(Mg(s)) - 2 mol × ΔG°f(Al³⁺(aq))
ΔG° = 3 mol × (-456.35 kJ/mol) + 2 mol × 0 kJ/mol - 3 mol × 0 kJ/mol - 2 mol × (-495.67 kJ/mol)
ΔG° = -377.71 kJ = -3.7771 × 10² kJ
This is the standard Gibbs free energy per mole of reaction.
<span>It's because The oil and the glass fibers do not interfere with X-ray crystallographic measurements because only one is crystalline.
</span><span>Glass fibers have a low absorbance for </span>X-rays<span> and is </span><span>not crystalline. Because of this, glass fibers will not interfere with X-Ray patterns. Oil, on the other hand, could be considered as crytalline.</span>