Answer: d. More than 6.5 grams of copper (II) is formed, and some copper chloride is left in the reaction mixture.
Explanation: 
As can be seen from the chemical equation, 2 moles of aluminium react with 3 moles of copper chloride.
According to mole concept, 1 mole of every substance weighs equal to its molar mass.
Aluminium is the limiting reagent as it limits the formation of product and copper chloride is the excess reagent as (14-7.5)=6.5 g is left as such.
Thus 54 g of of aluminium react with 270 g of copper chloride.
1.50 g of aluminium react with=
of copper chloride.
3 moles of copper chloride gives 3 moles of copper.
7.5 g of copper chloride gives 7.5 g of copper.
Answer:
Molar concentration of the Fe³⁺ in the unknown solution is 8.01x10⁻⁵M.
Explanation:
When you make a calibration curve in a spectrophotographic analysis you are applying the Lambert-Beer law that states the concentration of a compound is directely proportional to its absorbance:
A = E*l*C
<em>Where A is absorbance, E is molar absorption coefficient, l is optical path length and C is molar concentration</em>
<em />
Using the equation of the line you obtain:
y = 4541.6X + 0.0461
<em>Where Y is absorbance and X is concentration -We will assume concentration is given in molarity-</em>
As absorbance of the unknown is 0.410:
0.410 = 4541.6X + 0.0461
X = 8.01x10⁻⁵M
<h3>Molar concentration of the Fe³⁺ in the unknown solution is 8.01x10⁻⁵M.</h3>
<em />
Answer:
Explanation:
Burning fossil fuels releases the carbon dioxide stored millions of years ago. ... The concentration of carbon dioxide in the atmosphere has increased more in the northern hemisphere where more fossil fuel burning occurs. Since the Industrial Revolution the concentration globally has increased by about 40 % .
<span>You are given a cough syrup that contains 5.0% ethyl alcohol, c2h5oh, by mass and its density of the solution is 0.9928 g/ml. The molarity of the alcohol in the cough syrup is 21.55.</span>
Answer: Option (a) is the correct answer.
Explanation:
At low pressure and high temperature there exists no force of attraction or repulsion between the molecules of a gas. Hence, gases behave ideally at these conditions.
Whereas at low temperature there occurs a decrease in kinetic energy of gas molecules and high pressure causes the molecules to come closer to each other.
As a result, there exists force of attraction between the molecules at low temperature and high pressure and under these conditions gases are known as real gases.
Thus, we can conclude that the ideal gas law tends to become inaccurate when the pressure is raised and the temperature is lowered.