Answer:
A = 679.2955 ppm
Explanation:
In this case, we already know that 64Cu has a half life of 12.7 hours. The expression to use to calculate the remaining solution is:
A = A₀ e^-kt
This is the expression to use. We have time, A₀, but we do not have k. This value is calculated with the following expression:
k = ln2 / t₁/₂
Replacing the given data we have:
k = ln2 / 12.7
k = 0.0546
Now, let's get the concentration of Cu:
A = 845 e^(-0.0546*4)
A = 845 e^(-0.2183)
A = 845 * 0.8039
A = 679.2955 ppm
This would be the concentration after 4 hours
Answer is: intramolecular attractions are stronger.
Intramolecular attractions are the forces between atoms in molecule.
There are several types of intramolecular forces: covalent bonds, ionic bonds.
Intermolecular forces are the forces between molecules. The stronger are intermolecular forces, the higher is boiling point of compound, because more energy is needed to break interaction between molecules.
There are several types of intermolecular forces: hydrogen bonding, ion-induced dipole forces, ion-dipole forces andvan der Waals forces.
Hydrogen bonds are approximately 5% of the bond strength of covalent C-C or C-H bonds.
Hydrogen bonds strength in water is approximately 20 kJ/mol, strenght of carbon-carbon bond is approximately 350 kJ/mol and strengh of carbon-hydrogen bond is approximately 340 kJ/mol.
20 kJ/350 kJ = 0.057 = 5.7 %.
Answer:
Do to half of the mnairals this can not be made into a lab there is an error
Explanation:
Answer: 
Explanation:
The balanced chemical equation :
To calculate the moles, we use the equation:

According to stoichiometry:
4 moles of
produces = 902.0 kJ of energy
415.1 moles of
produces =
of energy
Thus the change in enthalpy is 
Answer:
Solution of isopropanol is 10.25 molal
Explanation:
615 g of isopropanol (C3H7OH) per liter
We gave the information that 615 g of solute (isopropanol) are contained in 1L of water. We need to find out the mass of solvent, so we use density.
Density of water 1g/mL → Density = Mass of water / 1000 mL of water
Notice we converted the L to mL
Mass of water = 1000 g (which is the same to say 1kg)
Molality are the moles of solute in 1kg of solvent, so let's convert the moles of isopropanol → 615 g . 1mol / 60g = 10.25 moles
Molality (mol/kg) = 10.25 moles / 1kg = 10.25 m