When sodium metal reacts with chlorine gas, the product would be sodium chloride or the table salt. The balanced chemical reaction would be:
2Na + Cl2 = 2NaCl
IN balancing reactions, it is important to remember that the number of atoms at each side should be equal. Hope this answers the question.
The answer is D; Mercury-194
All of the others are not when I looked them up
The model would look something like the image below.
There would be a <em>central nucleus</em> containing <em>20 protons</em> and <em>20 neutrons</em>.
Surrounding the nucleus would be four concentric rings (energy levels) containing <em>20 electron</em>s.
Going out from the nucleus, the number of electrons in each ring would
be <em>2, 8, 8, 2</em>.
Answer:
0.3229 M HBr(aq)
0.08436M H₂SO₄(aq)
Explanation:
<em>Stu Dent has finished his titration, and he comes to you for help with the calculations. He tells you that 20.00 mL of unknown concentration HBr(aq) required 18.45 mL of 0.3500 M NaOH(aq) to neutralize it, to the point where thymol blue indicator changed from pale yellow to very pale blue. Calculate the concentration (molarity) of Stu's HBr(aq) sample.</em>
<em />
Let's consider the balanced equation for the reaction between HBr(aq) and NaOH(aq).
NaOH(aq) + HBr(aq) ⇄ NaBr(aq) + H₂O(l)
When the neutralization is complete, all the HBr present reacts with NaOH in a 1:1 molar ratio.

<em>Kemmi Major also does a titration. She measures 25.00 mL of unknown concentration H₂SO₄(aq) and titrates it with 0.1000 M NaOH(aq). When she has added 42.18 mL of the base, her phenolphthalein indicator turns light pink. What is the concentration (molarity) of Kemmi's H₂SO₄(aq) sample?</em>
<em />
Let's consider the balanced equation for the reaction between H₂SO₄(aq) and NaOH(aq).
2 NaOH(aq) + H₂SO₄(aq) ⇄ Na₂SO₄(aq) + 2 H₂O(l)
When the neutralization is complete, all the H₂SO₄ present reacts with NaOH in a 1:2 molar ratio.

Answer:

Explanation:
Concentration: i is defined as the mole per litre.

mole=0.15
volume=400 ml=0.4 litre
