Explanation:
Given elements:
F, Sr, P, Ca, O, Br, Rb, Sb, Li, S
Elements with the same chemical reactivity will belong to the same group on the periodic table. This implies that elements in the same column will have the same reactivity;
Li and Rb are both alkali metals in group 1
Ca and Sr are both alkali earth metals in group 2
F and Br are halogens in group 7
O and S are group 6 elements
P and Sb are both in group 5 on the periodic table
So these groupings show elements with the same chemical properties.
The answer is 200 g.
If the molar mass of CaCl2 is 110.98 g/mol, this means there are 110.98 g in 1 L of 1 M solution.
Let's find how many g of CaCl2 are present in 0.720 M.
110.98 g : 1 M = x : 0.720 M
x = 110.98 g * 0.720 M : 1 M
x = 79.90 g
So there are 79.90 g in 0.720 M. In other words, in 1 L of 0.720 M solution there will be 79.90 g.
Now, we need to prepare ten beakers with 250 mL of solutions:
10 * 250 mL = 2500 mL = 2.5 L
79.90 g : 1 L = x : 2.5 L
x = 79.90 g * 2.5 L : 1 L
x = 199.75 g ≈ 200 g
Answer:
the overall cell potential
Explanation:
We must bear in mind that the standard hydrogen electrode is a reference electrode whose electrode potential has been arbitrarily set at 0 V.
The standard hydrogen electrode consists of hydrogen ion solution and hydrogen gas together with a platinum electrode.
The overall cell potential is the reduction potential of the substance being determined using the standard hydrogen electrode as a reference electrode since its electrode potential is set at zero volts.
Answer:
1. (S,O) < (Se,S) < (C,H) = (H,I) = (H,F) < (Si,Cl) < (K,Br)
Explanation:
The covalent character always increases down the group, this is because ionic character decreases down the group and also electronegativity.
In the same way, Covalent character always decreases across a period because electronegativity increases across a period.
The higher the electronegativity values between the two atoms, the more ionic it will be.