Answer : The temperature of the gas is, 245.9 K
Explanation :
To calculate the temperature of gas we are using ideal gas equation:

where,
P = pressure of gas = 2770.96 torr = 3.646 atm
Conversion used : (1 atm = 760 torr)
V = volume of gas = 88.84 L
T = temperature of gas = ?
R = gas constant = 0.0821 L.atm/mole.K
w = mass of gas = 609.64 g
M = molar mass of
gas = 38 g/mole
Now put all the given values in the ideal gas equation, we get:


Therefore, the temperature of the gas is, 245.9 K
Answer:
-It is considered the modern atomic model.
-It describes the probable locations of the electrons
Explanation:
edge 2020
Answer : The Lewis-dot structure and resonating structure of
is shown below.
Explanation :
Resonance structure : Resonance structure is an alternating method or way of drawing a Lewis-dot structure for a compound.
Resonance structure is defined as any of two or more possible structures of the compound. These structures have the identical geometry but have different arrangements of the paired electrons. Thus, we can say that the resonating structure are just the way of representing the same molecule.
First we have to determine the Lewis-dot structure of
.
Lewis-dot structure : It shows the bonding between the atoms of a molecule and it also shows the unpaired electrons present in the molecule.
In the Lewis-dot structure the valance electrons are shown by 'dot'.
The given molecule is, 
As we know that carbon has '4' valence electrons, nitrogen has '5' valence electrons and hydrogen has '1' valence electrons.
Therefore, the total number of valence electrons in
= 4 + 2(1) + 2(5) = 16
Now we have to determine the formal charge for each atom.
Formula for formal charge :

For structure 1 :



For structure 2 :



Convert 57.6 L to dm3 and divide it by 24
Answer:
3.00 cm
Explanation:
The absorbance can be expressed using <em>Beer-Lambert's law</em>:
A = ε*b*c
Where ε is a constant for each compound, b is the optical path, and c is the molar concentration of the compound.
Now we <u>match the absorbance values for both solutions</u>, because we want the absorbance value to be the same for both solutions:
A = ε * 1.00 cm * 7.68x10⁻⁶M = ε * b * 2.56x10⁻⁶ M
And <u>solve for b:</u>
ε * 1.00 cm * 7.68x10⁻⁶M = ε * b * 2.56x10⁻⁶ M
1.00 cm * 7.68x10⁻⁶M = b * 2.56x10⁻⁶ M
b = 3.00 cm