Answer:
2.94x10²² atoms of Cu
Explanation:
We must work with NA to solve this, where NA is the number of Avogadro, number of particles of 1 mol of anything.
Molar mass Cu = 63.55 g/mol
Mass / Molar mass = Mol → 3.11 g / 63.55 g/m = 0.0489 moles
1 mol of Cu has 6.02x10²³ atoms of Cu
0.0489 moles of Cu, will have (0.0489 .NA)/ 1 = 2.94x10²² atoms of Cu
Answer is: molality of urea is 5.84 m.
If we use 100 mL of solution:
d(solution) = 1.07 g/mL.
m(solution) = 1.07 g/mL · 100 mL.
m(solution) = 107 g.
ω(N₂H₄CO) = 26% ÷ 100% = 0.26.
m(N₂H₄CO) = m(solution) · ω(N₂H₄CO).
m(N₂H₄CO) = 107 g · 0.26.
m(N₂H₄CO) = 27.82 g.
1) calculate amount of urea:
n(N₂H₄CO) = m(N₂H₄CO) ÷ M(N₂H₄CO).
n(N₂H₄CO) = 27.82 g ÷ 60.06 g/mol.
n(N₂H₄CO) = 0.463 mol; amount of substance.
2) calculate mass of water:
m(H₂O) = 107 g - 27.82 g.
m(H₂O) = 79.18 g ÷ 1000 g/kg.
m(H₂O) = 0.07918 kg.
3) calculate molality:
b = n(N₂H₄CO) ÷ m(H₂O).
b = 0.463 mol ÷ 0.07918 kg.
b = 5.84 mol/kg.
Answer is: A. 1.81 mol.
Balanced chemical reaction: FeCl₂ + 2KOH → Fe(OH)₂ + 2KCl.
n(FeCl₂) = 4.15 mol; amount of iron(II) chloride.
n(KOH) = 3.62 mol; amount of potassium hydroxide, limiting reactant.
From chemical reaction: n(KOH) : n(Fe(OH)₂) = 2 : 1.
n(Fe(OH)₂) = n(KOH) ÷ 2.
n(Fe(OH)₂) = 3.62 mol ÷ 2.
n(Fe(OH)₂) = 1.81 mol; amount of iron(II) hydroxide.
First you should know that there is seven oxygen atoms in one Mn2O7
So
2.00 moles of Mn2O7 contain 14.00 moles of oxygen...
Then you multiply this no. with Avagadro no....
from formula
Number of moles= no. of particles/avagadro's no..
14.00×6.02×10²³=84.28 atoms of oxygen...
Answer is: glycerol because it is more viscous and has a larger molar mass.
Viscosity depends on intermolecular interactions.
The predominant intermolecular force in water and glycerol is hydrogen bonding.
Hydrogen bond is an electrostatic attraction between two polar groups in which one group has hydrogen atom (H) and another group has highly electronegative atom such as nitrogen (like in this molecule), oxygen (O) or fluorine (F).